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The methods of traditional scaled particle theorysSPTd are used to develop an extended scaled particle
theory that is now applicable to hard particle fluids confined by hard walls. The new theory, labeled inhomo-

geneous SPTsI-SPTd, introduces the functionḠ that describes the average value of the anisotropic density of
hard particle centers contacting a cavity placed at or behind a hard wall. We present an exact relation describ-

ing Ḡ for certain cavity sizes and, similar to the original SPT, an accurate interpolation scheme for larger cavity

radii. GivenḠ, the reversible work of inserting a cavity centered at or behind the hard wall can be estimated.
The work predictions at low to moderate packing fractions are extremely accurate, though small deviations
from simulation results become apparent at packing fractions close to the bulk hard sphere freezing transition.
I-SPT also reveals the importance of the line tension in determining the free energy of cavity formation for
cavities intersecting a hard wall, a term which has been previously neglected. Furthermore, this paper provides
the initial groundwork needed to develop a more complete SPT-based theory that can accurately predict the
depletion force between a hard particle and a hard structureless wall.

DOI: 10.1103/PhysRevE.71.036141 PACS numberssd: 05.70.Ce, 05.20.2y, 61.20.2p, 82.70.Dd

I. INTRODUCTION

Scaled particle theorysSPTd, introduced in 1959f1g, is a
remarkably simple theory that has, over the years, generated
useful insights into the behavior of hard particle fluids as
well as soft fluidsf2–8g. Some of the ideas of SPT are also
particularly useful for the analysis of those colloidal disper-
sions that can be closely approximated by hard core poten-
tials f9g, though SPT has not been extensively applied to
these systems. Since these dispersions exhibit behavior simi-
lar to hard particle fluids, an additional class of forces,
known as depletion forces, arise due to excluded volume
effectsf10g. Consequently, these depletion forces are essen-
tially entropic in origin and are important in governing fluid-
fluid phase transitions, particle drift, and fluid structure
f9,11–14g. Given the nature of these entropic effects, SPT
appears to provide a reasonable starting point for producing
accurate expressions of depletion forces in hard sphere col-
loids.

Recently, Corti and Reissf7g used SPT-based expressions
to describe the depletion force between a colloidal particle
and a hard, structureless wall. The reliance upon the equiva-
lence of cavities and hard particles yielded a relatively
straightforward procedure for calculating the depletion force.
In their approach, the work of cavity insertion was separated
into two components, a surface area and a pressure-volume
contribution, with SPT providing both of the needed pressure
and surfacesor boundaryd tension expressions. The resulting
predictions were qualitatively good, though problems arose
both for small particle sizes and at high densities since the
uniform fluid assumptions on which SPT is based are not
correct for a fluid confined by hard walls. In addition, quan-

titative errors were attributed to the neglecting of the line
tension that develops along the three-phase interfaceswhere
the cavity, wall, and fluid meetd.

Nevertheless, SPT, with its reliance upon physical and
geometric arguments, still remains an attractive approach to
the study of depletion forces in hard sphere colloids. The
main limitation with SPT, at least with respect to its ability to
describe depletion effects, is that it is a theory originally
developed to describe bulk uniform fluids. The effects of any
nonuniformities that appear near a wall are not accounted for
by SPT in its current form. Hence, the various physical and
geometric ideas of SPT need to be modified to describe non-
uniform fluids, thereby extending the range of applicability
of SPT and, hopefully, the accuracy of its depletion force
predictions. Our interest in this extension of SPT does not,
however, lie entirely with the estimation of depletion forces.
Applying the various exact conditions and methods of SPT
to nonuniform fluids may also serve to generate new insights
into the behavior of confined fluids, just as traditional SPT
was able to do for uniform fluids.

Given the prior success of SPT, we are, therefore, inter-
ested in developing a so-calledinhomogeneousSPT, where
the nonuniform fluid density that develops near the hard wall
is explicitly taken into account. This new inhomogeneous
SPT utilizes many arguments similar to the traditionalsbulk,
uniformd SPT. For example, statistical geometry is again
used to generate several exact conditions that ensure thermo-
dynamic consistency. In particular, we develop an inhomo-
geneous SPTsI-SPTd directly applicable to the insertion of
cavities that are centered at or behind a hard wall exposed to
a three-dimensional hard sphere fluid. This system provides
both a convenient starting point to test the extension of SPT
to nonuniform fluids and the initial steps needed to develop
more fully a SPT-based approach that can accurately predict
the depletion force between a particle and a wall. A forth-
coming paper will both use and extend the ideas presented*Electronic address: dscorti@ecn.purdue.edu
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here to describe more relevant cavity configurationsssuch as
those centered in front of the walld.

In this work, we introduce the central function of I-SPT,

Ḡ, which is related to the average density of particle centers
in contact with the surface of the cavity. This I-SPT function
allows one to calculate the reversible work of cavity inser-
tion and reveals some new information about the fluid struc-
ture surrounding cavities placed within confined hard particle
fluids. In our companion paperf15g, we discuss in more
detail the behavior of the fluid structure that develops around
a cavity intersecting a hard wall by analyzing an extension of
a previously derived SPT integral equationf5,16,17g. Analy-
sis of this integral equation yields important additional in-
sights into the properties of the I-SPT function discussed
here.

The paper is organized as follows. Section II reviews SPT
as applied to bulk hard sphere fluids. Section III describes
the relevant geometry of the hard particle fluid confined be-
tween hard structureless walls and presents the various equa-
tions of I-SPT for the three-dimensional hard sphere fluid.
Section IV compares the predictions of I-SPT with the results
of Monte Carlo simulations. Conclusions are presented in
Sec. V.

II. REVIEW OF SCALED PARTICLE THEORY

Before presenting our extension of SPT to an inhomoge-
neous fluid of hard particles, it is worthwhile to review the
concepts of SPT as applied to bulk hard particle fluids. SPT
has been previously derived for one-, two-, and three-
dimensional hard particle fluidsf1,18g and hard particle mix-
tures f19,20g. We review the pure component three-
dimensional case here to provide a foundation for the
following sections.

SPT was originally developed by Reiss, Frisch, and Leb-
owitz f1g who identified several exact relations that govern
the thermodynamic properties of uniform hard particle fluids.
Some of these relations describe the free energy cost of in-
serting additional hard particle solutes of any size to the sys-
tem. Specifically, the excess free energy cost was equated to
the reversible work,Wsld, of inserting at a given location an
equivalent cavity into the system. The cavity of radius of at
least l, sometimes referred to as al-cule, is a spherical
region devoid of hard particle centers. The cavity radiusl is
related to the equivalent solute particle diameterss and the
solvent particle diameters by

l =
ss + s

2
. s1d

The relationship betweenl, ss, and s is also illustrated in
Fig. 1.

We begin by introducing the central function of SPT,
Gsld, in which rGsld is defined as the local density of hard
sphere centers in contact with the cavity surface andr is the
bulk fluid densityssee Fig. 1d. Gsld is connected to the re-
versible work of inserting a cavity of radiusl through the
normal definition of thermodynamic workf1g

Wsld = 4prkTE
0

l

Gsrdr2dr. s2d

This relation is obtained by integrating the kinetic pressure
on the cavity surface,rGsldkT, over the volume of the cav-
ity.

Gsld is also related to the probability of observing a
spherical cavity of radius of at leastl within the fluid, de-
noted byP0sld. From the definition ofGsld, the probability
of finding a particle center in a small spherical shell of width
dl is equal to 4pl2rGslddl, so that the probability of the
same shell being empty is 1−4pl2rGslddl. Now, the prob-
ability of finding a cavity of radius of at leastl+dl, or
P0sl+dld, is simply the probability of finding a cavity of
radius l multiplied by the probability of finding an empty
spherical shell of widthdl, or

P0sl + dld = P0sldf1 − 4pl2rGslddlg. s3d

By expanding the left side of the above equation, rearrang-
ing, and taking the limit asdl→0, one finds thatf1g

Gsld =
− 1

4prl2

] ln P0sld
]l

. s4d

This equation could also have been derived using fluctuation
theory, whereWsld=−kT ln P0sld f21g.

Unfortunately,P0sld is not known in general, since it de-
pends upon high-order correlation functions. Yet, the geom-
etry of hard particle fluids provides an exact form for certain
cavity radii f1g. For løs /2, where cavities may contain at
most one particle center,P0sld is given by 1−rvsld, in
which vsld=4pl3/3 is the cavity volume. Applying this
condition to Eq.s4d yields f1g

Gsld =
1

1 − 4
3prl3

l ø
s

2
. s5d

As may be expected,Gs0d=1 since the local density about a
cavity of zero radius should be no different from the bulk,
uniform density.

FIG. 1. Diagram illustrating the relationship between a cavity of
radius of at leastl, the corresponding solute diameterss, and sol-
vent diameters. The center of each solvent particle may not pen-
etrate the dashed line representing the cavity. The local density of
hard sphere centers at the cavity surface is defined asrGsld f1g.
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By examining the geometry of spherical cavities able to
contain more than one particle, it was shown that bothGsld
and]G/]l are continuous atl=s /2, but]2G/]l2 is discon-
tinuous atl=s /2 f1g. Additional discontinuities occur in
higher-order derivatives at largerl f1g. Gsld is therefore
nonanalytic for l.s /2, but can be approximated by a
smooth function ofl. Despite being nonanalytic beyond
s /2, two other exact conditions onGsld can still be gener-
ated. Forl=s, in which the cavity is equivalent to another
solvent particle via Eq.s1d, Gssd is equal to the pair corre-
lation function at contact,gss+d. For l→`, the kinetic pres-
sure on the cavity surface must approach the bulk fluid pres-
sure because the surface curvature is approaching zero, i.e.,
liml→` rGsldkT=p. In order to utilize these exact matching
conditions and estimateGsld beyonds /2, an approximate
form of Gsld must be proposed. Using surface thermody-
namic arguments for the work of formation of a macroscopic
cavity, one can represent the work of cavity insertion asf1g

Wsld =
4

3
pl3p + 4pl2g`S1 −

2d

l
D + ¯ , s6d

where the first term is a pressure-volume work contribution
and the second is a surface work contribution. In the second
term,g` is the surface tensionsor more properly thebound-
ary tensiond of a cavity of zero curvaturesidentical to a pla-
nar surfaced andd is the “Tolman length” accounting for the
dependence of surface tension on curvature. In Eq.s6d, p, g`,
andd are functions of the uniform fluid density and propor-
tional tokT f1g. When this expression is compared to Eq.s2d,
the following form ofGsld is suggestedf1g

Gsld = a0srd +
a1srd
l/s

+
a2srd
sl/sd2 l .

s

2
. s7d

Each term in the above series is related to a thermodynamic
work contribution from Eq.s6d.

To solve for eachaisrd, three conditions are needed. The
chosen conditions are the continuity ofGsld and ]G/]l at
s /2 and the connection betweenGs`d and Gssd via the
virial equation of statesEOSd for hard spheresf1g

p

rkT
= Gs`d = 1 +

2

3
ps3rGssd, s8d

whereGssd has been substituted forgss+d and we reiterate
that Gs`d=p/rkT. After solving for eachaisrd, Eq. s7d can
be combined with Eq.s5d and integrated via Eq.s2d to obtain
the work of inserting a cavity of any size. In addition, solv-
ing for Gs`d in Eq. s7d yields the following EOS:

p

rkT
=

1 + h + h2

s1 − hd3 , s9d

whereh=prs3/6 is the dimensionless packing fraction. Cu-
riously, this EOS is identical to the later derived Percus-
Yevick compressibility EOSf22g, and is the name by which
Eq. s9d is most widely known.

It should be noted that five exact conditions onGsld were
originally derived, though only the three mentioned previ-
ously were applied to solve for the coefficients in Eq.s7d f1g.

sAll five were later used by Mandell and Reissf19g.d Con-
tinuing work f23g has generated two additional conditions,
producing a more accurate EOS. If more than three condi-
tions onGsld are applied, thereby requiring more terms in
the asymptotic representation ofGsld, a3srd must be set to
zero to suppress the appearance of logarithmic terms inWsld
that would appear upon integration ofGsld f3g.

III. THEORETICAL DEVELOPMENT
OF INHOMOGENEOUS SPT: CAVITIES INTERSECTING

A HARD WALL

Our particular extension of bulk SPT to inhomogeneous
fluids focuses on a pure component hard sphere fluid con-
fined between hard structureless walls in both the positive
and negativez directions with no confinements in the other
Cartesian directions. The system is also chosen to be in the
thermodynamic limit in which the distance between the two
hard walls, and other directions as well, greatly exceeds the
diameter of an individual particle. Hence, the identical non-
uniformities that develop near each wall do not influence one
another, so we are free to focus our attention on either the
right or left wall. For each hard wall, the hard core of a
particle may not penetrate the wall, meaning that the distance
of closest approach of a particle center to the wall iss /2 fsee
Fig. 2sadg. The plane parallel to and measured a distance of
s /2 from the hard wall is therefore chosen, for convenience,
to be the origin of thez axis, i.e.,z=0. Forz,0, the density
of particle centers is uniformly zero. Thus, with respect to
particle centers, thez=0 plane is an effective hard wall. For
zù0, the density of particle centers is given byrszd, a func-
tion that begins at its contact value ofrs0d=p/kT and even-
tually dampens to the bulk densityr. A typical plot of rszd
obtained by Monte CarlosMCd simulationssee Sec. IV Ad is
shown in Fig. 2sbd.

For the systems considered in this paper, and in contrast
to SPT as it has been applied to bulk uniform fluids, we
focus on cavities whose surfaces intersect thez=0 plane. In
particular, we restrict our attention to those cavities centered
at zø0. sCavities centered atz.0 are handled separately in
a forthcoming publication.d The portion of the cavity that
extends beyond thez=0 plane is therefore hemispherical for
h=0 or a spherical cap forh,0, whereh denotes thez
coordinate of the cavity center. Since the local density of
particle centers surrounding a cavity that intersects thez=0
plane is not isotropic, the extension of SPT to inhomoge-
neous systems is facilitated by the introduction of curvilinear
coordinates, shown in Fig. 3. The cavity radiusl originates
from the geometric center of the cavity and the angleu is
measured from a line perpendicular toz=0 passing through
the cavity center. The anglef describes the rotation around
this line. The system is symmetric aboutf, though, because
the x andy directions are indistinguishable due to a lack of
confinement in these directions.

A. I-SPT for hÏ0

I-SPT, or SPT of inhomogeneous hard sphere systems,
begins with the equations of bulk SPT, though these relations
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must be modified to account for both the intersection of a
cavity with the hard wall and the resulting nonuniform den-
sity about the cavity. The pressure normal to the cavity sur-
face remains solely kinetic and is still proportional to the
local density of hard sphere centers contacting the cavity
surface, but it must be recognized that this local density is a
function of the far away bulk densityr, the cavity radiusl,
and now the center coordinateh and the angleu. The
u-dependence arises from the anisotropic environment
around the cavity induced by the hard wall.

Similar to bulk SPT, the inhomogeneous SPT function,
Gsl ,u ,hd, is introduced, whererGsl ,u ,hd is defined as the
local density of hard sphere centers at the angleu that are in
contact with the surface of a cavity of radiusl centered at

z=h. As before,Gsl ,u ,hd is connected to the reversible
work of inserting a cavity of radiusl at z=h sso that the
cavity intersects the hard walld through

Wsl,hd = 2pE
−h

l

r2drE
0

cos−1s−h/rd
rGsr,u,hdkTsinu du,

s10d

where rGsl ,u ,hdkT has been substituted for the pressure
normal to the cavity surface and is integrated over the appro-
priater andu-domains for fixedh. The lower bound on ther
integral is −h, since forl,−h the cavity has not yet pen-
etrated the fluidsso thatWs−h,hd=0d. The upper bound foru
follows from the point of intersection of the cavity and the
z=0 plane, where cosu=−h/ r. The appearance of 2p fol-
lows from the integration overf.

In order to relateGsl ,u ,hd to P0sl ,hd, the probability of
observing a cavity of radius of at leastl centered atz=h, we
define the inhomogeneous analogue of Eq.s3d. Given that
the probability of observing a cavity of radius of at leastl
+dl, or P0sl+dl ,hd, is equal to the probability of finding a
cavity of radiusl centered atz=h multiplied by the prob-
ability of a concentric empty shell of widthdl, we find that

P0sl + dl,hd

= P0sl,hdS1 − 2prl2dlE
0

cos−1s−h/ld

Gsl,u,hdsinu duD .

s11d

Note thatGsl ,u ,hd must be integrated over theu-domain to
determine the probability of finding an empty shell. It is

FIG. 2. sad Two-dimensional representation of a hard sphere
fluid confined between hard impenetrable walls at thez limits. The
z axis orginates at a distance ofs /2 from the actual hard wall
swheres is the hard sphere diameterd and is perpendicular to the
hard wall.sbd Inhomogeneous density profilerszd of hard spheres at
a distancez from the hard wall for a bulk densityrs3=0.5. rszd
begins at its contact value ofrs0d=p/kT and decreases, while os-
cillating, to the bulk densityr.

FIG. 3. Definition of the coordinate system used to analyze cavi-
ties centered atz=hø0. l is the radius of the cavity andu is the
angle measured from a line perpendicular to thez=0 plane. The
local density of particle centers about the cavity is symmetric inf.
Only that portion of the cavity extending beyondz=0 is shown.
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useful at this point to define a new functionḠsl ,hd by av-
eragingGsl ,u ,hd over the relevantu domain, resulting in

Ḡsl,hd =

2pE
0

cos−1s−h/ld
Gsl,u,hdsinu du

2pE
0

cos−1s−h/ld
sinu du

=
l2

l2 + lh
E

0

cos−1s−h/ld
Gsl,u,hdsinu du. s12d

This average also allowsP0sl+dl ,hd andWsl ,hd to be ex-
pressed more compactly as

P0sl + dl,hd = P0sl,hdf1 − 2prḠsl,hdsl2 + lhddlg,

s13d

Wsl,hd = 2prkTE
0

l

Ḡsr,hdrsr + hddr. s14d

As in Sec. II, we now expand the left side of Eq.s13d, com-
bine terms, and take the limit asdl→0. The result is

rḠsl,hd =
− 1

2psl2 + lhd
] ln P0sl,hd

]l
. s15d

The determination of an exact form forḠsl ,hd now requires
that we identify an exact expression forP0sl ,hd.

Consider the circle of intersection that is generated when
the spherical cavity intersects thez=0 planesthis circle also
lies in thez=0 planed. If the diameter of this circle of inter-
section is less than or equal tos, i.e., løÎh2+ss /2d2, then
that portion of the cavity to the right ofz=0 can contain at
most one solvent particle. Now, the probability of finding a
particle center in this region isevsl,hdrsr ddr , wherersr d is
the local density of centersswhen no cavity is presentd at a
positionr centered atz=h. The integral is evaluated over the
volume of the cavity that extends to the right ofz=0, or
vsl ,hd. Consequently,P0sl ,hd is given by 1−evsl,hdrsr ddr .
Since the density,rsr d, is most naturally a function ofz fsee
Fig. 2sbdg, we instead integraterszd over a body of revolu-
tion corresponding to the cavity. For the three-dimensional
cavities we consider, the revolved function is a circle whose
area ispfl2−sz−hd2g. Therefore,

P0sl,hd = 1 −pE
0

l+h

rszdfl2 − sz− hd2gdz,

s16d

l øÎh2 + Ss

2
D2

.

Finally, entering the above into Eq.s15d leads to the follow-
ing exactrelation

rḠsl,hd =

E
0

l+h

rszddz

sl + hdS1 − pE
0

l+h

rszdfl2 − sz− hd2gdzD ,

s17d

l øÎh2 + Ss

2
D2

.

This exact expression forḠsl ,hd can be checked for ther-
modynamic consistency by examining its limit for small
cavities. Whenl→−h for vsl ,hd→0g, the pressure on the
cavity surface should approach the pressure that is exerted on
the z=0 plane when no cavity is present. In other words,

rḠs−h,hdkT=p, the bulk pressure. With the aid of
L’Hopital’s rule, Eq. s17d indicates that

Ḡs− h,hd = lim
l→−h

Ḡsl,hd =
rs0d

r
=

p

rkT
, s18d

wherers0d=p/kT is the contact value of the density profile
rszd.

Another interesting property ofḠsl ,hd is found by exam-
ining its first derivative with respect tol for l approaching
−h. Differentiation followed by the application of L’Hopital’s

rule yields the following result for the slope ofḠsl ,hd at
l=−h:

lim
l→−h

]Ḡ

]l
=

1

2r
Udrsl + hd

dl
U

l=−h
=

1

2r
Udrszd

dz
U

z=0
ø 0,

s19d

where the second equality results from a change of variables,
and we note that for hard sphere fluids the initial slope of the
density profile at a hard wall is never positivefsee Fig. 2sbdg.
The initial negative slope implied by Eq.s19d provides an

interesting constraint on the qualitative behavior ofḠsl ,hd.
For example, consider the limiting behavior ofḠsl ,hd as

l→`. As l becomes very large, the surface of the cavity
will begin to resemble a planar surface, or flat hard wall, so

thatḠs` ,hd should be equal top/rkT fjust like Gs`d in bulk
SPTg. There is, of course, a small wedge-shapedf24g region
localized about the point of intersection of the cavity surface
and thez=0 plane where the surrounding fluid will not be-
have as if next to a hard wall for any value ofl. In fact, the
local density within this wedge exceeds the hard wall limit of
p/rkT ssee our companion paperf15g for a more detailed
discussion of the density profile surrounding a cavity that
intersects the hard walld. The effects of this density enhance-
ment do not, however, propagate much beyond the wedge
region for large cavity radii. Hence, asl→`, the wedge
regionswhose surface area is becoming an ever smaller frac-
tion of the total surface area of the cavityd yields a negligibly

small affect onḠsl ,hd. Therefore, one can state with confi-

dence that liml→` Ḡsl ,hd=p/rkT, thereby providing an-

other exact condition onḠsl ,hd. Whether Ḡsl ,hd ap-
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proaches this limit from values above or belowp/rkT is not
specified. In the Appendix, we present a thermodynamic ar-

gument that strongly suggests thatḠsl ,hd approaches its in-
finite limit from values belowp/rkT. Given this result and

the accurate form ofḠsl ,hd proposed in the next section, it

is also likely thatḠsl ,hd never exceedsp/rkT.

Now, if both conditions,Ḡs−h,hd=p/rkT and Ḡs` ,hd
=p/rkT, are to be met along with the initially negative slope

required by Eq.s19d, we conclude thatḠsl ,hd must exhibit a
minimum at some intermediate value ofl. This behavior is
quite different from what is exhibited by the bulkGsld,
which begins at unity and rises to the final value ofGs`d
=p/rkT, where]G/]lù0 for all l. In particular, our results
show that forh=0 shemispherical cavityd, the minimum in

Ḡsl ,hd always appears in the range of 0øløs /2 where

Ḡsl ,0d is known exactly from Eq.s17d. fWe have been un-
able to prove this formally via Eq.s17d since rszd is not
known in general. Though, the use ofrszd generated from

molecular simulation always yields a minimum ofḠsl ,hd
for h=0 within 0øløs /2, at least for densities up tors3

=0.914.g For a more thorough examination of the decrease of

and minimum inḠsl ,hd sspecifically forh=0d, the reader is
referred to our accompanying paperf15g.

The initial decrease inḠsl ,hd also implies that the aver-
age density of spheres in contact with the cavity surface de-
creases as the cavity grows in sizesand begins to extend
beyond thez=0 planed. Given that a local density enhance-
ment abovep/kT appears at the point of intersection between
the cavity surface and thez=0 planef15g, the initial decrease

in Ḡsl ,hd implies that the local density at the front of the
cavity su<0d drops quite rapidly, yielding a net decrease in

Ḡsl ,hd. Again, this anisotropic behavior is not observed in
bulk SPT.

Using Eq.s17d, along with an accurate density profilerszd
enables one to generateḠsl ,hd up to the exact limit ofl

=Îh2+ss /2d2. Beyond this limit, the form ofḠsl ,hd is not

known. Hence, as in bulk SPT, the description ofḠsl ,hd for
larger cavities requires the introduction of a function that
utilizes some amount of exact information, if known, about

Ḡsl ,hd. For example, in the original SPT paper, bothGsld
and]G/]l are shown to be continuous at the exact limit of
l=s /2. Invoking similar arguments for our inhomogeneous

system suggests thatḠsl ,hd and]Ḡ/]l are also continuous

at the exact limit ofl=Îh2+ss /2d2. (Likewise, ]2Ḡ/]l2

should also be discontinuous atÎh2+ss /2d2, though this
condition appears to be of limited use. In addition, continu-

ing work suggests that not only may]2Ḡ/]l2 be discontinu-
ous, but that it likely diverges forl→Îh2+ss /2d2 from

above. The determination of]2Ḡ/]l2 for values infinitesi-
mally larger thanÎh2+ss /2d2 appears to reduce to the two-
dimensional problem of determining circular areas of over-

lap. ]2Ḡ/]l2 should therefore diverge just as]2G/]l2 does
for the unconfined two-dimensional hard disk fluidf18g.)

Consequently,Ḡsl ,hd and]Ḡ/]l at l=Îh2+ss /2d2, known
from Eq. s17d, provide us with our first two exact matching
conditions. A third exact condition follows from the behavior

of Ḡsl ,hd at l→`, where, as discussed earlier, we have that

Ḡs` ,hd=p/rkT. A further condition can also be generated,
but the nature of this additional constraint and whether it is
exact, is specific forh=0 andh,0. In other words, a fourth
exact condition that is available for hemispherical cavities is
not applicable to cavities shaped like spherical caps. Forh
,0, we introduce a fourth condition based on a semiempir-
ical argument.

B. Interpolation for hemispherical cavity: h=0

Let us begin by considering the growth of a hemispherical
cavity centered atz=h=0. For notational convenience, we

drop the explicit reference toh=0 in Ḡsl ,hd and relabel the

I-SPT function simply asḠsld. From Eq. s17d, the hemi-
spherical I-SPT function forløs /2 is given exactly by

rḠsld =

E
0

l

rszddz

lS1 − pE
0

l

rszdsl2 − z2ddzD l ø
s

2
. s20d

In addition, the work of cavity formation is equal to

Wsld = 2prkTE
0

l

Ḡsrdr2dr. s21d

To interpolateḠsld between its exact limit ofl=s /2 and

the limit of Ḡsl→`d, we invoke the macroscopic thermo-
dynamic arguments used in bulk SPT and propose to repre-

sentḠsld with the following four-term asymptotic series

Ḡsld = b0srd +
b1srd
sl/sd

+
b2srd
sl/sd2 +

b4srd
sl/sd4 l .

s

2
.

s22d

The inclusion of a fourth term in Eq.s22d can be thought of
as accounting for the “three-phase” line tension contribution
to Wsld swhere the hard sphere fluid, hard wall, and cavity
comprise the three phases that meet at a circle lying in the
z=0 planed. Note thatb3srd has been set to zero to suppress
the appearance of logarithmic terms inWsld f3g.

Application of Eq.s22d requires the use of four matching
conditions. As mentioned in the previous section, three con-

ditions are the continuity ofḠsld and ]Ḡ/]l at l=s /2

fdetermined via Eq.s20dg andḠs`d=p/rkT. A fourth match-
ing condition is available forl=s swhen the cavity is
equivalent to another hard sphered via the potential-
distribution theory of Widomf25,26g. Given that the density
of hard particle centers at some positionz is proportional to
the exponential of the work required to insert a hard particle
at thatz location, the ratio of the contact density,rs0d, of the
fluid density profile to the bulk densityr, is equal to
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rs0d
r

= expS−
Wssd − W`ssd

kT
D =

p

rkT
, s23d

whereWssd is the work of inserting another hard sphere or
cavity of radiuss at z=0, andW`ssd is the work of inserting
the same particle or cavity in the bulksz→`d fluid. W`ssd is
numerically identical to the excess chemical potentialsmexd
of the hard sphere fluid whileWssd can be calculated from

Ḡsld using equations21d.
Because this inhomogeneous theory does not connect

Ḡsld to the bulk radial distribution function at contact, the
determination of eachbisrd in equations22d does not pro-
duce an approximate EOS. This approach requires the use of
an independent EOS to calculatep/rkT andW`ssd a priori.
sp andW`ssd could be calculated via simulation, but we use
an independent EOS to preserve a link between I-SPT and
bulk SPT.d The Percus-YevicksPYd EOS derived by bulk
SPT was used to generate the results for most densities in
this paper. Our I-SPT method is, however, flexible enough to
use another EOS, such as the Carnahan-StarlingsCSd EOS
f27g, or even molecular simulation data.

With four matching conditions identified and an EOS hav-
ing been chosen, eachbisrd can now be determined by si-
multaneous solution of the relevant equations. Note that the

condition onḠsld asl→` requires thatb0srd=p/rkT. Af-
ter eachbisrd is determined, one can calculate the work of
insertion for any sized hemispherical cavity through the use
of equations21d.

C. Interpolation for spherical cap-shaped cavity:h,0

Like the hemispherical case, we again use an asymptotic

function to representḠsl ,hd beyond the exact limit. We pro-

pose to representḠsl ,hd for h,0 with the following four-
term asymptotic series:

Ḡsl,hd = b0sr,hd +
b1sr,hd

sl + hd/s
+

b2sr,hd
lsl + hd/s2

+
b4sr,hd

l3sl + hd/s4, l .Îh2 + Ss

2
D2

, s24d

wherebisr ,hd are the matching coefficients. This series was
chosen from a list of possible functions as the one which best
matched simulation data, in addition to reducing to Eq.s22d
for h=0. The three previously mentioned exact matching

conditions of liml→` Ḡsl ,hd=p/rkT and the continuity of

both Ḡsl ,hd and ]Ḡsl ,hd /]l at the exact limit still apply
here. The other matching condition obtained from Widom’s
potential-distribution theoryf25,26g is, however, not valid in
this case because a cavity centered ath,0 is never equiva-
lent to a solvent particle. Instead, we develop a fourth match-
ing condition using a semiempirical argument: asl becomes
large relative touhu, one may expect the cavity to behave like
a hemispherical cavity, i.e., the distribution of hard sphere
centers around the nonhemispherical cavity should be nearly
identical to that surrounding a hemispherical cavity of equal

radius. In other words, we expect the value ofrḠsl ,hd to be

very nearrḠsld for l@−h. Although reasonable, this con-
dition was partly deduced by analyzing the behavior of

Ḡsl ,hd as obtained by simulation. Hence, our fourth, but not

exact, matching condition is chosen to beḠslmatch,hd
=Ḡslmatchd for some sufficiently large value oflmatch.
Clearly, the choice oflmatchwill depend upon the value ofh,
and so a single value oflmatchcannot be used to describe all
sr ,hd combinations. As an example, we found for −s,h
,0 that numerical predictions agreed quite well with simu-
lation results forlmatch=4s. Larger values oflmatch did not
provide additional accuracy.

IV. RESULTS

We present several tests of the accuracy of I-SPT, in
which the predictions ofWsl ,hd obtained from I-SPT are
compared to the results of molecular simulation. To accom-
plish this, I-SPT requires some expression, either analytical
or numeric, for the density profilerszd. Approximate expres-
sions of rszd for hard sphere fluids have been developed
using hypernetted chain and superposition approximations
f28,29g, but these approximations are not sufficiently accu-
rate for extending SPT to inhomogeneous fluids at densities
higher than aboutrs3=0.4. We, therefore, chose to use den-
sity profiles generated directly by Monte Carlo simulation.
This is not a drawback, however, since highly accurate den-
sity profiles can be obtained via simulation with little com-
putational effort. In addition, I-SPT, unlike bulk SPT, does
not yield information on the properties and structure of the
hard sphere fluid near a wall. For example, I-SPT requires
that an independent EOS be introduced to calculate

Ḡs` ,hd=p/rkT. Likewise,rszd must be determined outside
of I-SPT. Nevertheless, I-SPT is flexible enough such that
future analytical approximations forrszd, when they become
as accurate as simulation profiles, can be directly incorpo-
rated into I-SPT.

A. Simulation method

The comparison with simulation results requires that both
rszd andWsl ,hd be determined computationally. We gener-
ated all relevant data by MC simulations in an isothermal-
isobaricsconstantN,p,Td ensemble with hard walls. All vari-
ables were scaled using characteristic values for hard particle
systems. The number of particles used in the various simu-
lations was adjusted to ensure that a uniform fluid phase with
the appropriate bulk properties developed in the center of the
simulation cell. Depending on the chosen density, the system
size ranged from 500 to 3000 particles. Each simulation was
run for a target density in the center of the simulation cell,
with the imposed pressure being calculated from the PY EOS
f1g to ensure consistency between the interior densityr, the
density profile rszd, and the wall contact densityrs0d
=p/kT. Hard walls were imposed at thez limits of the simu-
lation cell and periodic boundary conditions were applied in
the x andy directions. Thex andy dimensions of the simu-
lation cell were large enough to prevent a particle or cavity
“seeing” its mirror image. As a rule of thumb, these dimen-
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sions were at least 4lmax, wherelmax was the largest cavity
radius probed by the simulation. The simulations were al-
lowed to equilibrate before recording results for a sufficient
number of cycles, typically 33104 to 105, each cycle includ-
ing N particle translations and one volume adjustment. Vol-
ume moves were accomplished by adjusting only the length
of the cell in thez direction of the simulation cellf30,31g and
accepted according to standardNpT acceptance criteriaf32g,
while translational moves were accomplished by randomly
moving particles and looking for particle overlap. Simulation
density profiles were generated by measuring the local den-
sity as a function ofz and averaging eachz bin over the
length of the simulation. Results were collected over a pro-
duction run of 106 to 53106 cycles.

The reversible work of cavity insertion for differentl and
h was calculated from the probability of observing cavities
along the hard wall. To determineWsl ,hd for large cavity
sizessgenerallyl.1.5sd, an umbrella sampling technique
f32g was used in which windows of progressively larger radii
were probed. Within each simulation window, a cavity was
placed into on the system and grown or shrunk radially as an
extra MC trial “move” each cycle. The cavity move was
controlled according to a biasing potential,csld. Good sta-
tistics are achieved whencsld=−Wsld, so we used a poly-
nomial regression of the previously collected cavity work
profile to computecsld f33g. After each window, the most
recent probability histogram was normalized according to the
biasing potential and linked with the previously collected
work data to obtain the updated cavity work profile. With
this method, we were able to determine work profiles up to
cavity radii around 3s. Beyond this size and for moderate to
high densities, the large system sizes required and the large
number of windows needed, as a result of the ever-increasing
steepness ofWsld, made this simulation technique too com-
putationally expensive.

B. Hemispherical cavity: Ḡ„l… and W„l…

Once the density profilerszd and bulk pressurep/kT are

known, bothḠsld andWsld for cavities centered atz=0 can
be obtained using the equations shown in Sec. III B. Deter-
mining rszd directly from simulation allows us to calculate

Ḡsld “exactly” for løs /2 using Eq. s20d. Ḡsld, and
therebyWsld, were calculated analytically forl.s /2 using
the series approximation given by Eq.s22d, where the four
hemispherical matching conditions were invoked to solve for
eachbisrd.

Figure 4 displays the hemispherical I-SPT functionḠsld
for the bulk densitiesrs3=0.1, 0.3, 0.5, and 0.6. Also in-
cluded for comparison is the corresponding bulk SPT func-

tion Gsld at rs3=0.3.Ḡsld begins atp/rkT for l=0 and, as
expected from Eq.s19d, has an initially negative slope. In the

limit of l→`, Ḡsld again approachesp/rkT. Note that

Gs`d=p/rkT as well. In general,Ḡsld approaches the infi-
nite limit much faster thanGsld, as seen by the comparison
of these two functions presented in Fig. 4 forrs3=0.3. In

fact, for the bulk densities shown,Ḡsld reaches a value of at

least 95% of its infinite limit within a cavity radius of only
four particle diameters. The bulkGsld requires a radius of
approximately eight particle diameters to reach the same
value.

As argued previously, and as a consequence of Eq.s19d,
Ḡsld exhibits a minimum at some intermediate radius. A
more detailed inspection of Fig. 4 also reveals that this mini-

mum always occurs beforel=s /2. The minimum ofḠsld is
not, however, located at the same value ofz where the first
minimum of the density profilerszd is found.fSee Fig. 2sbd;
in general, the first local minimum ofrszd may be located at
a value ofz either greater than or less thans /2.g Neverthe-
less, there is a connection between these two minima. The

radius l at which the minimum inḠsld occurs decreases
with an increase in the bulk densityr, just as the value ofz
at which therszd reaches its first local minimum decreases
with an increase inr. When rszd is integrated in Eq.s20d,
this behavior becomes part ofḠsld because the successive
integration volumes appearing in Eq.s20d yield smaller and
smaller contributions.

Ultimately, the minimum inḠsld implies that the average
density of particle centers at the cavity surface is less than
the hard wall contact value ofrs0d=p/kT. Equation s20d
does not provide information on the local structure, or
u-dependence of the density profile around the cavity. We

further investigate the minimum inḠsld in our companion
paperf15g, analyzing the local structure that develops around

the hemispherical cavity. Interestingly, we find thatḠsld ini-
tially decreases despite the appearance of a local density en-
hancement abovep/kT at the point of intersection between
the cavity and thez=0 plane.

The true test of I-SPT and the various relations describing

Ḡsld is to compare the I-SPT work predictions forWsld with

FIG. 4. Three-dimensional inhomogeneous SPT functionḠsld
for the bulk densitiesrs3=0.1, 0.3, 0.5, and 0.6. For comparison,
the dashed line denotes the bulk SPT functionGsld for rs3=0.3.

For all densities, bothḠs0d andḠs`d are equal top/rkT. Note that

the minimum in eachḠsld always occurs beforel=s /2.
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the results of MC simulation. Figure 5 shows for several bulk

densities the values ofWsld obtained fromḠsld, via Eq.
s21d, along withWsld determined directly from simulation.
Overall, the agreement between simulation and I-SPT is ex-
cellent, at least up tol=3s. In particular, works of cavity
growth are predicted with high accuracy for values ofWsld
in excess of 100kT. For example, the error forrs3=0.6 at
l=3s is less than 0.2%. MC simulation becomes inefficient
for radii greater than 3s due to sampling difficulties. Inho-
mogeneous SPT should, however, continue to accurately pre-

dict Wsld beyond 3s since, as seen in Fig. 4,Ḡsld rapidly
approaches its infinite limit beyondl=3s. For larger radii,
the interfacial contributions toWsld will become increas-
ingly small compared to the leading order pressure-volume
contribution.

I-SPT can be subjected to a more rigorous test by exam-
ining its predictions for a fluid pressure whose bulk density
is near the hard sphere freezing transitionsrfreezings

3=0.949
f34–36gd. Figure 6 compares simulation data to theoretical
predictions for a reduced pressure ofps3/kT=10.308 ob-
tained using two different equations of state. At this high
pressure, and since the EOS of the hard sphere fluid is not
known exactly, the different EOSs yield different values of
the bulk densityr corresponding to the same pressure. For
example, the SPT-derived PY EOS predicts thatrs3=0.9,
while the more accurate CS EOS predicts thatrs3=0.914.
sFor reference, the bulk density in the simulation center was
rs3=0.911±0.005 for this pressure.d Consequently, the pre-
dictions of I-SPT using the PY EOS should not accurately
match data produced by MC simulation in an isothermal-
isobaric ensemble in which thepressure, not the interior den-
sity, is fixed. Thus, a more accurate EOS may improve the
predictions forWsld. Unfortunately, this is not observed in
Fig. 6 where the predictions of I-SPT using the CS EOS
yield an error comparable to I-SPT using the PY EOS when
compared to simulation. The error for the CS-derived results

is, in fact, slightly larger than that from the PY EOS. Using
the CS EOS, good agreement between the I-SPT predictions
and simulation data is found up tol=s sas expected from
using the matching condition atl=sd, but I-SPT begins to
underpredictWsld for larger radii. This difference may be
due to the MC simulation overpredicting the work of inser-
tion or the error involved in usingW`ssd generated from the
CS EOS fwhich may not matchW`ssd obtained directly
from the simulationg, or possibly the interpolation chosen for

Ḡsld not taking into account the discontinuitysand potential

divergenced in ]2Ḡ/]l2 at l=s /2. Yet, the I-SPT predictions
are still reasonably accurate, as the error atl=3s is only
<31kT for Wsld around 480kT, or approximately 6.4% error.
At the same point, the error in the PY-based prediction is
<25kT, corresponding to a 5.1% underprediction.

C. Spherical cap

We now examine the accuracy of I-SPT results for cavi-

ties centered atz,0. As for h=0, Ḡsl ,hd is calculated ex-
actly by integratingrszd within a particular range ofl fsee
Eq. s17dg. Beyond this exact limit, an interpolation form, Eq.

s24d, is used to representḠsl ,hd in which the various coef-
ficients are evaluated with the three exact conditions and a
fourth semiempirical condition discussed in Sec. III C.

Wsl ,hd is then calculated by integratingḠsl ,hd via Eq.
s14d.

FIG. 5. Reversible work of insertionWsld for hemispherical
cavities of various radiil centered atz=0 for rs3=0.3, 0.5, and
0.6. Solid lines represent the work predictions I-SPT while the
closed circles represent MC simulation data.

FIG. 6. Reversible work of cavity insertionWsld for cavities of
radius l centered atz=0 for a reduced bulk presureps3/kT
=10.308. The closed circles represent the MC simulation data, the
dashed line denotes I-SPT results based on the PY EOS, and the
solid line represents I-SPT results using the Carnahan-StarlingsCSd
EOS. The corresponding interior density from the PY EOS isrs3

=0.9, while that from the CS EOS isrs3=0.914. Both densities are
near the bulk hard sphere freezing transitionsrfreezings

3=0.949
f34–36gd. At l=3s, the deviation between the CS-based predictions
and simulation data is<31kT corresponding to a 6.4% underpre-
diction. At the same point, the error in the PY-based predictions is
<25kT, corresponding to a 5.1% underprediction.
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Figure 7 showsḠsl ,hd at various densities for cavities
centered ath=−0.7s. The exact range for this choice ofh is
0.7sølø0.860s. The radius used for the semiempirical
condition, Ḡslmatchd=Ḡslmatch,hd, is lmatch=4s. The hemi-

sphericalḠsld at rs3=0.5 is shown for comparison. Quali-

tatively, Ḡsl ,hd and the hemisphericalḠsld are the same.

Ḡsl ,hd satisfies the same limits ofp/rkT for l=−h and l

→` as Ḡsld, and also exhibits an initially negative slope.

Quantitatively, however, the initial behavior ofḠsl ,hd dif-

fers greatly fromḠsld. Ḡsl ,hd decreases at a rate initially

similar to Ḡsld, but the minimum ofḠsl ,hd occurs at a
smaller relative distance, i.e., relative to the minimum value
of l. In addition, this minimum does not necessarily occur in
the exactl-range. For example, atrs3=0.6, the slope at the
exact limitsl=0.860sd is Ḡ8s0.860s ,hd=−0.799/s, indicat-

ing thatḠsl ,hd is still decreasing. We must therefore rely on
the interpolation function to predict the minimum. In this
case, it is predicted to occur atl=0.92s fcorresponding to a
relative distance of 0.92s−0.7s=0.2s; in comparison, at the

same density, Fig. 4 reveals that the minimum ofḠsld oc-
curs at a relative distance of 0.39sg. After the minimum,

Ḡsl ,hd mimics the behavior ofḠsld, rapidly becoming

nearly identical in value toḠsld. The near equality of

Ḡsl ,hd andḠsld at such small radii indicates thatḠsl ,hd is
relatively insensitive to the value oflmatchused in the match-
ing condition sas long as a sufficiently large value is se-

lectedd. This behavior ofḠsl ,hd verifies our assumption that

for cavities centered behind thez=0 planesh,0d, Ḡsl ,hd
eventually becomes identical toḠsld.

The near equivalence ofḠsl ,hd andḠsld at such a small
radius ofl=2s for rs3=0.5 is unexpected. Forl=2s, the

volume of the hemispherical cavity that extends to the right
of z=0 is simply 16.76s3. Forh=−0.7s, the cavity displaces
only a volume of 8.32s3, just 49.6% of the hemisphere.
Thus, one might suspect that the local environment about
each of these cavities will be quite different. Yet, the average
of the local densities of sphere centers in contact with each
cavity surface are identical.

Figure 8 shows the I-SPT predictions of the work of cav-
ity insertion for the same densities chosen for Fig. 7. Again,
there is good agreement between the simulation data and the
theoretical predictions, at least up tol=3s. This agreement

also indicates that the location of the minimum inḠsl ,hd is
predicted accurately by our chosen interpolation function

fEq. s24dg. BecauseḠsl ,hd is close to the infinite limit at
l=3s, the theory should continue to coincide with simula-
tion results for largerl. The theory does begin to underpre-
dict Wsl ,hd nearl=3s at densities at and abovers3=0.5,
which may be a consequence of the fewer exact number of
matching conditions that can be generated forh,0. The
underprediction is not large, however, as I-SPT yields an
error of <1.9% atrs3=0.6 andl=3s.

V. CONCLUSION

An inhomogeneous scaled particle theory that provides
theoretical methods for determining the reversible work of
inserting a cavity near a hard structureless wall has been
presented. The I-SPT predictions of the work of insertion are
in good agreement with MC simulation results for the hard
sphere fluid up to relatively large cavity sizessl=3sd for all
bulk densities below the fluid-solid transition. Thus, the ex-
act equations of inhomogeneous SPT were confirmed and the

proposed series interpolations ofḠsl ,hd were shown to be
very accurate.

Perhaps the most striking consequence of I-SPT is that the
average density of spheres in contact with cavity surface, or

FIG. 7. The functionḠsl ,hd for cavities centered atz=−0.7s at
bulk densities ofrs3=0.3, 0.5, and 0.6. The dashed line shows the

corresponding hemisphericalḠsld for rs3=0.5. The minima in

Ḡsl ,hd do not occur within the exactl range of 0.7søl
ø0.860s.

FIG. 8. Reversible work of cavity insertionWsl ,hd for cavities
centered atz=−0.7s at bulk densitiesrs3=0.3, 0.5, and 0.6. Solid
lines represent I-SPT predictions and solid circles represent data
generated by MC simulation.
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Ḡsl ,hd, rapidly reaches a minimum value at small cavity
radii before increasing to its infinite size limit ofp/rkT. The
minimum and the geometric reasons for its appearance are
discussed in more detail in our companion paperf15g. Be-

cause the initial decrease ofḠsl ,hd implies that the average
pressure on the cavity surface decreases, I-SPT confirms that
the line tension developing at the three-phase interface
swhere the cavity, wall, and fluid meetd is important in gov-
erning the behavior of cavities placed at a hard wall. The

decrease inḠsl ,hd also suggests that the line tension is a
negative quantity. The value of the line tension, of course,
depends on the selection of the dividing surfaces. We have
assumed that the dividing surface between the fluid and the
cavity is convergent with the surface of the cavity and the
dividing surface between the fluid and the wall is thez=0
plane. Selecting different locations could cause the line ten-
sion or boundary tension to become positive. The line ten-
sion, of course, becomes negligible for large cavities since

Ḡsl ,hd approaches the hard wall contact value ofp/rkT.
I-SPT may be used to determine numerical estimations of the
line tension using the various relations of surface thermody-
namics.

I-SPT can also be straightforwardly extended to the two-
dimensional hard disk fluid confined by planar hard walls
f37g. The equations are similar to those presented in this
paper, but show minor changes due to the different system
geometry. The behavior of the two-dimensional version of

Ḡsl ,hd is identical to that shown here, but]Ḡ/]l at the
exact limit is not used as a matching condition, likeGsld in
bulk SPT for hard disksf18g. Work predictions from two-
dimensional I-SPT also agree quite well with those from MC

simulation, despite the discontinuity in]Ḡ/]l.
Finally, the ideas presented here provide the initial steps

required for the development of an improved SPT-based
method of calculating the depletion potentials and forces for
a confined fluid. The work predictions forløs could be
used to determine part of the depletion potential of a solute
whose diameter is less than the hard particle diameter ofs.
Our theory does not yet allow us to generate depletion po-
tentials forz.0 or for solute diameters greater thans. To
calculate depletion potentials forz.0, an alternative ap-
proach must be developed in which a cavity is “pushed” into
the fluid. Calculating the force in thez direction that opposes
this “pushing” allows one to determine the work required to

“push” the cavity into the fluid. Relations similar toḠsl ,hd
are needed to predict this force, i.e., a functionF̄sl ,hd de-
scribing the net normal forcesin thez directiond on the cavity
surface centered atz=h can be related to various statistical
geometric quantities. I-SPT, as validated by the presented
results, can be used to generate a crucial matching condition

for this new functionF̄sl ,hd. The extension of I-SPT to de-

scribeF̄sl ,hd is the subject of a forthcoming paper.
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APPENDIX: SLOPE AND CURVATURE OF Ḡ„l… AS l\`

As discussed in Sec. III, the asymptotic value ofḠsld is

p/rkT. WhetherḠsld approaches this limit from above or
below was not specified from its defining equations. Here,
we present a thermodynamic argument that strongly suggests

that Ḡsld always approaches its asymptotic value from be-
low.

From Eq.s21d, the slope ofḠsld is given by

]Ḡ

]l
=

1

2prkT

]

]l
S 1

l2

]W

]l
D . sA1d

Since the work of formation,Wsld, of a cavity intersecting
thez=0 plane can also be thought of as arising from the sum
of pressure-volume, surface area, and line tension contribu-
tions, one can write the following expression:

dW= pdV+ dsgrAd + g`dAwall + dstrLd. sA2d

In the above,tr is the line tension of the three-phasescavity-
fluid-walld interfacesbased on a suitably chosen dividing sur-
faced, L is the length of this linear interface,Awall is the area
of the wall exposed to the fluid,gr is the boundary tension of
a curved surface located a radiusr from the cavity center and
the remaining terms are as defined in Sec. II. For the hemi-
spherical cavity centered atz=0, Eq.sA2d is transformed to

dW= p2pl2dl + dsgr2pl2d − g`2pldl + dstr2pld,

sA3d

where the cavity-fluid dividing surface is chosen to be the
same as the cavity surfacesr =ld and the three-phase inter-
face is chosen to lie within thez=0 plane. After some
straightforward algebra, one has

]

]l
S 1

l2

]W

]l
D = 2p

]2gr

]l2 −
4p

l2 gr +
4p

l

]gr

]l
+

2p

l2 g` +
2p

l

]2tr

]l2

−
4p

l3 tr . sA4d

As the cavity becomes large, both the boundary tensiongr
and line tensiontr may be approximated by the asymptotic
functionsf1g

gr = g`S1 −
2d

l
D sA5d

and

tr = t`S1 −
dt

l
D . sA6d

Entering these approximations into Eq.sA4d yields the fol-
lowing expression:

]

]l
S 1

l2

]W

]l
D = −

2p

l2 g` +
8pd

l3 g` −
4p

l3 t`. sA7d

Thus, the slope ofḠsld, to the leading order, is
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]Ḡ

]l
=

− 1

rkT

g`

l2 + Osl−3d, sA8d

which is always positive becauseg`ø0. By taking an addi-

tional derivative of Eq.sA7d, the second derivative ofḠsld,
to the leading order, is

]2Ḡ

]l2 =
2

rkT

g`

l3 + Osl−4d, sA9d

which is always negative, indicating thatḠsld is concave

down. BecauseḠsld has both a positive slope and negative
curvature asl→`, it will approach its asymptotic limit from
values less thanp/rkT. The above argument does not ex-

clude the appearance abovep/rkT of a maximum inḠsld at
some cavity radius betweenl=s /2 andl=`. Such a maxi-

mum, however, would require the structure ofḠsld to be
much more complex than is currently thought. Simulation
results, along with the overall accuracy of the I-SPT formal-
ism, do not indicate that a maximum occurs abovep/rkT

and are coincident with the conclusion thatḠsld always re-
mains below its asymptotic limit.
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