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Extension of scaled particle theory to inhomogeneous hard patrticle fluids.
I. Cavity growth at a hard wall
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The methods of traditional scaled particle the¢8PT) are used to develop an extended scaled particle
theory that is now applicable to hard particle fluids confined by hard walls. The new theory, labeled inhomo-

geneous SPTI-SPT), introduces the functiof® that describes the average value of the anisotropic density of
hard particle centers contacting a cavity placed at or behind a hard wall. We present an exact relation describ-
ing G for certain cavity sizes and, similar to the original SPT, an accurate interpolation scheme for larger cavity
radii. GivenG, the reversible work of inserting a cavity centered at or behind the hard wall can be estimated.
The work predictions at low to moderate packing fractions are extremely accurate, though small deviations
from simulation results become apparent at packing fractions close to the bulk hard sphere freezing transition.
I-SPT also reveals the importance of the line tension in determining the free energy of cavity formation for
cavities intersecting a hard wall, a term which has been previously neglected. Furthermore, this paper provides
the initial groundwork needed to develop a more complete SPT-based theory that can accurately predict the
depletion force between a hard particle and a hard structureless wall.
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I. INTRODUCTION titative errors were attributed to the neglecting of the line
tension that develops along the three-phase interfabere
Scaled particle theor¢SPT), introduced in 19591], is a  the cavity, wall, and fluid megt

remarkably simple theory that has, over the years, generated Nevertheless, SPT, with its reliance upon physical and
useful insights into the behavior of hard particle fluids asgeometric arguments, still remains an attractive approach to
well as soft fluidg2—8]. Some of the ideas of SPT are also the study of depletion forces in hard sphere colloids. The
particularly useful for the analysis of those colloidal disper-main limitation with SPT, at least with respect to its ability to
sions that can be closely approximated by hard core poterxplescnbe depletion effects, is that it is a theory originally

tials [9], though SPT has not been extensively applied todevelqped to describe bulk uniform fluids. The effects of any
these systems. Since these dispersions exhibit behavior si onuniformities that appear near a wall are not accounted for

. : . y SPT in its current form. Hence, the various physical and
:fr:os\(/)n h:srd dgs‘lretlt(i:cl)i ];lgr'gss a:risaed(gﬂgns)l ;I)ijj dg; f\(/)(;fuerf]’ eometric ideas of SPT need to be modified to describe non-

. niform fluids, thereby extending the range of applicabilit
effects[10]. Consequently, these depletion forces are essers: spT and hopefullz the accgracy of i?s deplgtF;on forc{a
tially entropic in origin and are important in governing fluid- ' '

. .S ; . i redictions. r interest in this extension of SPT n
fluid phase transitions, particle drift, and fluid structureped ctions. Our interest in this extension of SPT does not,

. : owever, lie entirely with the estimation of depletion forces.
[9.11-14. Given the nature of these entropic effects, SP-Ijlg\pplying the various exact conditions and methods of SPT

appears to provid_e a reasonab!e starting _point for producin% nonuniform fluids may also serve to generate new insights
accurate expressions of depletion forces in hard sphere Bhto the behavior of confined fluids, just as traditional SPT

loids. . .
. . . was able to do for uniform fluids.
Recently, Corti and Reid5] used SPT-based expressions Given the prior success of SPT, we are, therefore, inter-

to describe the depletion force between a colloidal particle,oq i developing a so-calléchomogeneouSPT, where
and a hard, structureless wall. The reliance upon the equivz%F1 !

| f i d hard il elded lativel e nonuniform fluid density that develops near the hard wall
ence or caviies and hard particles yielded a relalively;q explicitly taken into account. This new inhomogeneous
straightforward procedure for calculating the depletion force PT utilizes many arguments similar to the traditiofiallk
.Intth?'r approach, trt‘e work ?f cavity mse:jtlon was separa}te niform) SPT. For example, statistical geometry is again
n Ot Ygotpompaﬂesnps_l’_ a su_rd:_alcebaﬁa ??h a przssaure-vo UMsed to generate several exact conditions that ensure thermo-
contribution, wi providing both ot the needed pressur ynamic consistency. In particular, we develop an inhomo-
and surfacéor boundary tension expressions. The resulting

dicti litativel 4 thouah bl eneous SPTI-SPT) directly applicable to the insertion of
predictions were quaiitalively good, though problems aroSe., iiag that are centered at or behind a hard wall exposed to
both for small particle sizes and at high densities since th

uniform fluid assumptions on which SPT is based are no three-dimensional hard sphere fluid. This system provides

" fluid fined by hard walls. In additi oth a convenient starting point to test the extension of SPT
correct for a Tiuid confined by hard walls. In addition, quan-y, ,onyniform fluids and the initial steps needed to develop

more fully a SPT-based approach that can accurately predict
the depletion force between a particle and a wall. A forth-
*Electronic address: dscorti@ecn.purdue.edu coming paper will both use and extend the ideas presented
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here to describe more relevant cavity configuratimeh as
those centered in front of the wall - ~<
In this work, we introduce the central function of I-SPT,

G, which is related to the average density of particle centers
in contact with the surface of the cavity. This I-SPT function
allows one to calculate the reversible work of cavity inser-
tion and reveals some new information about the fluid struc-
ture surrounding cavities placed within confined hard particle
fluids. In our companion papdr5], we discuss in more
detail the behavior of the fluid structure that develops around
a cavity intersecting a hard wall by analyzing an extension of
a previously derived SPT integral equatid16,17. Analy-

sis of this integral equation yields important additional in- £ 1 piagram illustrating the relationship between a cavity of

sights into the properties of the I-SPT function discussedygiys of at leask, the corresponding solute diametes and sol-

here. vent diameters. The center of each solvent particle may not pen-
The paper is organized as follows. Section Il reviews SPTetrate the dashed line representing the cavity. The local density of

as applied to bulk hard sphere fluids. Section Ill describeard sphere centers at the cavity surface is defingazés) [1].

the relevant geometry of the hard particle fluid confined be-

tween hard structureless walls and presents the various equa- N

tions of I-SPT for the three-dimensional hard sphere fluid. W) :47Tpk-rf G(r)rédr. (2)

Section IV compares the predictions of I-SPT with the results 0

of Monte Carlo simulations. Conclusions are presented in_ . ) ) ) L
Sec. V. This relation is obtained by integrating the kinetic pressure

on the cavity surfacegG(\)KT, over the volume of the cav-
ity.
Il. REVIEW OF SCALED PARTICLE THEORY G(\) is also related to the probability of observing a
. . . spherical cavity of radius of at leastwithin the fluid, de-
Before_presentlng our extension of SPT. to an '”homoge'noted byPg(\). From the definition ofG(\), the probability
neous fluid of hard parthles, It 1s worthwh|le_to review the f finding a particle center in a small spherical shell of width
concepts of SPT as applied to bulk hard particle fluids. SPﬁ)\ is equal to 4\2pG(\)d\, so that the probability of the

has been previously derived for one-, two-, and three- . . 2
. . . . . .__same shell being empty is 1-mA“pG(\)d\. Now, the prob-
dimensional hard particle fluid4,18] and hard particle mix ability of finding a cavity of radius of at least+dx, or

dimensional case here o provide. a Toundation for ol *ON). is simply the probabilty of finding a caviy of

following sections. radlus_)\ multiplied l_Jy the probability of finding an empty
SPT was originally developed by Reiss, Frisch, and Leb_spherlcal shell of widtrdA, or

owitz [1] who identified seyeral exa_lct relations th_at govern Po(\ +d\) = PoO\)[L - 4m\2pG(\)d\]. (3)

the thermodynamic properties of uniform hard particle fluids.

Some of these relations describe the free energy cost of iBy expanding the left side of the above equation, rearrang-

serting additional hard particle solutes of any size to the sysing, and taking the limit as\ — 0, one finds thaf1]

tem. Specifically, the excess free energy cost was equated to

the reversible workW()\), of inserting at a given location an G(\) = __13"1—'30()‘)

equivalent cavity into the system. The cavity of radius of at 4mp\® I\

least A\, sometimes referred to as »cule, is a spherical

region devoid of hard particle centers. The cavity radius

related to the equivalent solute particle diametgiand the

solvent particle diameter by

pG(1)=local density at cavity surface

(4)

This equation could also have been derived using fluctuation
theory, whereN(\)=—KkT In Py(\) [21].

Unfortunately,Po()\) is not known in general, since it de-
pends upon high-order correlation functions. Yet, the geom-
etry of hard particle fluids provides an exact form for certain

A= —— (1) cavity radii[1]. For A<o/2, where cavities may contain at
2 most one particle centeRy(\) is given by 1-pu(\), in
which v(\)=4m\%/3 is the cavity volume. Applying this
The relationship between, o, and o is also illustrated in  ondition to Eq.(4) yields[1]

Fig. 1.
We begin by introducing the central function of SPT, a 1 _o
G(\), in which pG(\) is defined as the local density of hard W= e M2 ®)

sphere centers in contact with the cavity surface aiglthe

bulk fluid density(see Fig. 1L G(\) is connected to the re- As may be expected3(0)=1 since the local density about a
versible work of inserting a cavity of radius through the cavity of zero radius should be no different from the bulk,
normal definition of thermodynamic woild] uniform density.
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By examining the geometry of spherical cavities able to(All five were later used by Mandell and ReigE9].) Con-

contain more than one particle, it was shown that &¢tR)
anddG/a\ are continuous at=o/2, buts?G/da? is discon-
tinuous atA=o¢/2 [1]. Additional discontinuities occur in
higher-order derivatives at larger [1]. G(\) is therefore
nonanalytic forA>q¢/2, but can be approximated by a
smooth function of\. Despite being nonanalytic beyond
/2, two other exact conditions d@(\) can still be gener-
ated. ForA=o¢, in which the cavity is equivalent to another
solvent particle via Eq(l), G(o) is equal to the pair corre-
lation function at contacg(c*). For A — <o, the kinetic pres-

tinuing work [23] has generated two additional conditions,
producing a more accurate EOS. If more than three condi-
tions onG(\) are applied, thereby requiring more terms in
the asymptotic representation Gf{\), as(p) must be set to
zero to suppress the appearance of logarithmic terrdé i)

that would appear upon integration Gf\) [3].

IIl. THEORETICAL DEVELOPMENT
OF INHOMOGENEOUS SPT: CAVITIES INTERSECTING
A HARD WALL

sure on the cavity surface must approach the bulk fluid pres-

sure because the surface curvature is approaching zero, i.

lim,_.. pG(\)kT=p. In order to utilize these exact matching
conditions and estimat&(\) beyondo/2, an approximate

form of G(\) must be proposed. Using surface thermody-

e.,Our particular extension of bulk SPT to inhomogeneous
fluids focuses on a pure component hard sphere fluid con-
fined between hard structureless walls in both the positive
and negativez directions with no confinements in the other

namic arguments for the work of formation of a macroscopicCartesian directions. The system is also chosen to be in the

cavity, one can represent the work of cavity insertio Hs
4 26
W(x):§m\3p+4m2yw(1—7) + e (6)

where the first term is a pressure-volume work contributio

and the second is a surface work contribution. In the secon

term, v, is the surface tensiofor more properly thdound-
ary tension of a cavity of zero curvaturédentical to a pla-
nar surfacgand § is the “Tolman length” accounting for the
dependence of surface tension on curvature. IN&qp, V..,
and ¢ are functions of the uniform fluid density and propor-
tional tokT [1]. When this expression is compared to E),
the following form of G(\) is suggestedl1]

g

> E (7

ai(p) + ay(p)

GV = aolp) + Mo (Mo)?

thermodynamic limit in which the distance between the two
hard walls, and other directions as well, greatly exceeds the
diameter of an individual particle. Hence, the identical non-
uniformities that develop near each wall do not influence one
another, so we are free to focus our attention on either the
jght or left wall. For each hard wall, the hard core of a
éarticle may not penetrate the wall, meaning that the distance
of closest approach of a particle center to the wadt/ig [see

Fig. 2(@)]. The plane parallel to and measured a distance of
o/2 from the hard wall is therefore chosen, for convenience,
to be the origin of the axis, i.e.,z=0. Forz< 0, the density

of particle centers is uniformly zero. Thus, with respect to
particle centers, the=0 plane is an effective hard wall. For
z=0, the density of particle centers is given piz), a func-

tion that begins at its contact value @f0)=p/kT and even-
tually dampens to the bulk densigy A typical plot of p(2)
obtained by Monte CarléMC) simulation(see Sec. IV Ais

Each term in the above series is related to a thermodynamighown in Fig. 2b).

work contribution from Eq(6).

For the systems considered in this paper, and in contrast

To solve for eachy;(p), three conditions are needed. The to SPT as it has been applied to bulk uniform fluids, we

chosen conditions are the continuity Gf\) and dG/J\ at
o/2 and the connection betweds(«) and G(o) via the
virial equation of statdEQS for hard spherefl]

p

pkT -
whereG(o) has been substituted fgfo™) and we reiterate
that G(e0) =p/ pkT. After solving for eachy;(p), Eq.(7) can
be combined with Eq5) and integrated via Ed2) to obtain
the work of inserting a cavity of any size. In addition, solv-
ing for G(x) in Eq. (7) yields the following EOS:

P 1yt
pkT— (1-7)°"

where»=mpa3/6 is the dimensionless packing fraction. Cu-

G(e)=1+ 2770'3pG(0'), (8)

9

focus on cavities whose surfaces intersectzh® plane. In
particular, we restrict our attention to those cavities centered
atz=<0. (Cavities centered a>0 are handled separately in
a forthcoming publication.The portion of the cavity that
extends beyond the=0 plane is therefore hemispherical for
h=0 or a spherical cap foh<0, whereh denotes thez
coordinate of the cavity center. Since the local density of
particle centers surrounding a cavity that intersectszth@
plane is not isotropic, the extension of SPT to inhomoge-
neous systems is facilitated by the introduction of curvilinear
coordinates, shown in Fig. 3. The cavity radiuriginates
from the geometric center of the cavity and the an@les
measured from a line perpendicularze0 passing through
the cavity center. The anglé describes the rotation around
this line. The system is symmetric abafit though, because
the x andy directions are indistinguishable due to a lack of

riously, this EOS is identical to the later derived Percus-confinement in these directions.

Yevick compressibility EO$22], and is the name by which
Eq. (9) is most widely known.
It should be noted that five exact conditions®M\) were

originally derived, though only the three mentioned previ-

ously were applied to solve for the coefficients in Eg).[1].

A. I-SPT for h=0

I-SPT, or SPT of inhomogeneous hard sphere systems,
begins with the equations of bulk SPT, though these relations
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where pG(\, #,h)kT has been substituted for the pressure
FIG. 2. (a) Two-dimensional representation of a hard spherenormal to the cavity surface and is integrated over the appro-

fluid confined between hard impenetrable walls atzienits. The  priater and §-domains for fixech. The lower bound on the
z axis orginates at a distance of/2 from the actual hard wall integral is -h, since forA <-h the cavity has not yet pen-
(where o is the hard sphere diameteand is perpendicular to the etrated the fluidso thatW(-h,h)=0). The upper bound fof
hard wall.(b) Inhomogeneous density profiiz) of hard spheres at  fo|lows from the point of intersection of the cavity and the
a distancez from the hard wall for a bulk densitge®=0.5. p(2) z=0 plane, where cog=-h/r. The appearance ofm2fol-
bfegihs at its contact valu.e @{0)=p/kT and decreases, while os- lows from the integration ovesp.
cillating, to the bulk density. In order to relateG(\, 6,h) to Py(\,h), the probability of

- ) ) observing a cavity of radius of at leasttentered ar=h, we
must be modified to account for both the intersection of ayefine the inhomogeneous analogue of B). Given that
cavity with the hard wall and the resulting nonuniform den-ine propability of observing a cavity of radius of at least
sity about the cavity. The pressure normal to the cavity surs.q), or Py(\ +d,h), is equal to the probability of finding a
face remains solely kinetic and is still proportional to thecavity of radius\ centered az=h multiplied by the prob-

local density of hard sphere centers co_ntacting the_ca_vit)ébi”ty of a concentric empty shell of widt\, we find that
surface, but it must be recognized that this local density is a

function of the far away bulk density, the cavity radius,,
and now the center coordinate and the angled. The
f-dependence arises from the anisotropic environment
around the cavity induced by the hard wall.

Similar to bulk SPT, the inhomogeneous SPT function,
G(\, 6,h), is introduced, wher@G(\, 6,h) is defined as the

Po(\ +dX\,h)

cos_l(_h/)‘)
= PO()\,h)<l - 2mp\Zd\ f G(\, 6,h)sin 6d6) .
0

(11)

local density of hard sphere centers at the amfleat are in
contact with the surface of a cavity of radinscentered at

Note thatG(\, 6,h) must be integrated over tiiedomain to
determine the probability of finding an empty shell. It is
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useful at this point to define a new functi@()\,h) by av- Mh (2d
eragingG(\, 6,h) over the relevant domain, resulting in _ 0 plz)dz
. pG()\lh) = }\+h il
cos ~(=h/\) _ 2 _(5_h\2
2 G(\, 6,h)sin 6.do (“h)(l ”L PN~ (2= ]dz)
— 0
G(\,h) = cos Y(-hin) 5 (17)
quf singdeé £ < ,h2+ o
0 2/
2 S L(-hin —
= ZK_JCOS )G()\,gyh)sin 6de. (12 This exact expression faB(\,h) can be checked for ther-
A" +AhJ, modynamic consistency by examining its limit for small

cavities. Whem\ — —h [or v(\,h)— 0], the pressure on the
This average also allowBy(\+d\,h) andW(\,h) to be ex-  cavity surface should approach the pressure that is exerted on

pressed more compactly as the z=0 plane when no cavity is present. In other words,
- pG(=h,h)kT=p, the bulk pressure. With the aid of
Po(X + d\,h) = Po(\, h)[1 = 27pG(\,h) (A2 + Nh)d\], L'Hopital's rule, Eq.(17) indicates that
(13 — — 0
G-hh=lim coum=L2-P (15
A—-h pkT
A
W(\,h) = zﬂkaJ E(r,h)r(r +h)dr. (14) where p(0)=p/KT is the contact value of the density profile
0 p(2).

Another interesting property @(\ , h) is found by exam-
ining its first derivative with respect th for A approaching
—h. Differentiation followed by the application of L'Hopital's

rule yields the following result for the slope @&(\,h) at

As in Sec. Il, we now expand the left side of E¢3), com-
bine terms, and take the limit @.— 0. The result is

-1 d1n Pg(\,h)

G(\,h) = 15  A=-h:
PO =2 T o 13 B
_ WG_1 dprth)| 1 de@|
The determination of an exact form f@&(\ ,h) now requires )\L"_]h N 2p d\ A:_h_ 2p dz |, -
that we identify an exact expression fég(\ ,h). (19)

Consider the circle of intersection that is generated when
the spherical cavity intersects tlze 0 plane(this circle also  where the second equality results from a change of variables,
lies in thez=0 plang. If the diameter of this circle of inter- and we note that for hard sphere fluids the initial slope of the
section is less than or equal &g i.e., A< \h?+(c/2)? then  density profile at a hard wall is never positi\see Fig. 2b)].
that portion of the cavity to the right a=0 can contain at The initial negative slope implied by Eq19) provides an
most one solvent particle. Now, the probability of finding anteresting constraint on the qualitative behavioiGih , h).
particle center. in this region 'ﬁva(”‘?'r' yvherep(r) IS For example, consider the limiting behavior @€\ ,h) as
the .Ic.)cal density of center(:whgn no cgwty is presenat a N—o. As A\ becomes very large, the surface of the cavity
positionr centered at=h. The integral is evaluated over the will begin to resemble a planar surface, or flat hard wall, so

volume of the cavity that extends to the right o£0, or — _ ) _
v(\,h). ConsequentlyPy(\,h) is given by 1, o(r)dr. thatG(e0, h) should be equal tp/pkT [just like G() in bulk
‘ SPT]. There is, of course, a small wedge-shap24 region

Since the densitp(r), is most naturally a function df[see localized about the point of intersection of the cavity surface
Fig. 2b)], we instead integratp(z) over a body of revolu- nd thez=0 plane where the surrounding fluid will not be-

tion_ porresponding to the cavity. For th_e three-qimensionaﬁave as if next to a hard wall for any value xfIn fact, the

;?;/;cliess \[/\)/\ezf?zn_s;g%r ;mi:gf\é (;g/ed function is a circle Whosqocal density within this wedge exceeds the hard wall limit of
& ' ' p/pkT (see our companion papé€t5] for a more detailed

discussion of the density profile surrounding a cavity that

N+h
—1_ 2_(5_h)2 intersects the hard wallThe effects of this density enhance-
Polh. =1 Trfo PN~ (z=hldz, ment do not, however, propagate much beyond the wedge
(16) region for large cavity radii. Hence, as—o, the wedge
2 region(whose surface area is becoming an ever smaller frac-
A< /h2+ (g) ) tion of the total surface area of the cayijields a negligibly

small affect ong()\ f). Therefore, one can state with confi-

Finally, entering the above into E(L5) leads to the follow- dence that lim .. G(\,h)=p/pkT, thereby providing an-
ing exactrelation other exact condition onG(\,h). Whether G(\,h) ap-
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proaches this limit from values above or belppkT is not  ConsequentlyG(x,h) andaG/ax at\=1h?+(a/2), known

specified. In the Appendix, we present a thermodynamic arfom Eq. (17), provide us with our first two exact matching

gument that strongly suggests ti@&(\ ,h) approaches its in-  conditions. A third exact condition follows from the behavior

finite limit from values belowp/pkT. Given this result and  of G() ,h) at\ — o, where, as discussed earlier, we have that

the accurate form o6(\,h) proposed in the next section, it G(s h)=p/HkT. A further condition can also be generated,

is also likely thatG(\,h) never exceedp/pkT. but the nature of this additional constraint and whether it is
Now, if both conditions,G(—h,h)=p/pkT and G(s,h) exact, is specific foh=0 andh< 0. In other words, a fourth

=p/ pkT, are to be met along with the initially negative slope €xact condition that is available for hemispherical cavities is

required by Eq(19), we conclude tha@()\,h) must exhibit a not appll_cable to cavities shape_q like spherical caps. rFor_
o . ) . - <0, we introduce a fourth condition based on a semiempir-

minimum at some |nterme<j|ate vglge ©f This behavior is ical argument

quite different from what is exhibited by the bul&()\), ’

which begins at unity and rises to the final value @f»)

=p/ pkT, wheredG/d\ =0 for all N. In particular, our results B. Interpolation for hemispherical cavity: h=0

show that forh=0 (hemispherical cavily the minimum in . — . .
- . <o/2 wh Let us begin by considering the growth of a hemispherical
G(\.h) always appears in the range okQ.<o/2 where  cayity centered ar=h=0. For notational convenience, we

G(\,0) is known exactly from Eq(17). [We have been un- drop the explicit reference =0 in G()\,h) and relabel the

Er?l)ewaoir?rogietgf _T_?]rgTjalLy ;ﬂi Eg(élng)sm(;ig ﬁg)telj fr;g:n I-SPT function simply asG(\). From Eq.(17), the hemi-
9 ) gn. g — spherical I-SPT function fok < ¢/2 is given exactly by

molecular simulation always yields a minimum @&f\,h)

for h=0 within 0O<\<o/2, at least for densities up o’ . (2d
=0.914] For a more thorough examination of the decrease of o 0 plz)dz o
and minimum inG(\, h) (specifically forh=0), the reader is pPG(N) = X NS (20
referred to our accompanying pagés). )\(1 - wf p(2(\%- zz)dz)
0

The initial decrease iB(\,h) also implies that the aver-
age density of spheres in contact with the cavity surface demn addition, the work of cavity formation is equal to
creases as the cavity grows in si@nd begins to extend \
beyond thez=0 plang. Given that a local density enhance- _ N2
ment abovep/ kT appears at the point of intersection between W) = 2mpkT 0 G(rjredr. @D
the cavity surface and tre=0 plane[15], the initial decrease o
in G(\,h) implies that the local density at the front of the  To interpolateG(\) between its exact limit ok=o0/2 and
cavity (§~0) drops quite rapidly, yielding a net decrease inthe limit of G(\— =), we invoke the macroscopic thermo-
G(\,h). Again, this anisotropic behavior is not observed indynamic arguments used in bulk SPT and propose to repre-
bulk SPT. sentG(\) with the following four-term asymptotic series

Using Eq.(17), along with an accurate density profiléz)
enables one to — L .\ Bi(p) . Bap) . Balp) o

genera&\ ,h) up to the exact limit of\ G(\) = By(p) + + 5+ 7 N>

— 21 7 o2 TR — . ()\/0’) (7\/0‘) ()\/0’) 2
=yh*+(0/2)=. Beyond this limit, the form oG():h) is not
known. Hence, as in bulk SPT, the descriptiorGih , h) for (22
larger cavities requires the introduction of a function thatThe inclusion of a fourth term in Eq22) can be thought of
utilizes some amount of exact information, if known, aboutas accounting for the “three-phase” line tension contribution
and 4G/ d\ are shown to be continuous at the exact limit of COMPprise the three phases that meet at a circle lying in the
\=0/2. Invoking similar arguments for our inhomogeneousZ=0 plang. Note thatS(p) has been set to zero to suppress

system suggests th&(\,h) anddG/J\ are also continuous the appearance of Iogarithmi(_: termsWi)) [3]. :
s Application of Eq.(22) requires the use of four matching

- — 12 2 (i ; 20> 1 9\ 2 - ; - . .
at the exact limit ofA=1h H"’%M‘”S& #GIIN conditions. As mentioned in the previous section, three con-
should also be discontinuous gh*+(s/2)%, though this ditions are the continuity of5(\) and dG/Jd\ at A=c/2

condition appears to be of limited use. In addition, continu-[d termined via Eq20)] andG(=)=p/ pkT. A fourth match
. —, .2 . . etermined via Eq20)] andG(«)=p/ pkT. A fourth match-
ing work suggests that not only ma#G/ . be discontinu ing condition is available forn=0 (when the cavity is

ous, but that it Ilkgly (.j|verge_s for = h +(0/2_) .f.rom- equivalent to another hard sphpreia the potential-
above. The deterwof(}/a)\z for values infinitesi-  distribution theory of Widonj25,26|. Given that the density
mally larger thanyh?+(o/2) appears to reduce to the two- of hard particle centers at some positiois proportional to
dimensional problem of determining circular areas of overthe exponential of the work required to insert a hard particle
lap. 3G/ d\? should therefore diverge just @G/d\? does  at thatz location, the ratio of the contact densip0), of the

for the unconfined two-dimensional hard disk flJi@ig].)  fluid density profile to the bulk density, is equal to
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p0) _ ex;{— W(o) —Woo(tf)) _ b 23) very nearpg()\) for A>-h. Although reasonable, this con-
p - kT dition was partly deduced by analyzing the behavior of

- pkT’
whereW(q) is the work of inserting another hard sphere OrG()\,h) as obtained by simulation. Hence, our fourth, but not

cavity of radiuso atz=0, andW.,.(o) is the work of inserting  €Xact, matching condition is chosen to &\match )
the same particle or cavity in the bulk— ) fluid. W..(0) is = =G(\yac) for some sufficiently large value OoRaich
numerically identical to the excess chemical potentigl)  Clearly, the choice ok . Will depend upon the value df,
of the hard sphere fluid whileV(o) can be calculated from and so a single value o5, cannot be used to describe all
E()\) using equatior(21). (p,h) combinations. As an example, we found foo<h

Because this inhomogeneous theory does not conneét 0 that numerical predictions agreed quite well with simu-

G(\) to the bulk radial distribution function at contact, the Iartcl)c\)/? d;ezggiim["géhcjgé Larger values ORmaen did not
determination of eaclB;(p) in equation(22) does not pro- P y

duce an approximate EOS. This approach requires the use of
an independent EOS to calculgiéokT andW,.(o) a priori.

(p andW..(o) could be calculated via simulation, but we use  We present several tests of the accuracy of I-SPT, in
an independent EOS to preserve a link between I-SPT anghich the predictions ofM(\,h) obtained from I-SPT are
bulk SPT) The Percus-YevickPY) EOS derived by bulk compared to the results of molecular simulation. To accom-
SPT was used to generate the results for most densities fflish this, I-SPT requires some expression, either analytical
this paper. Our I-SPT method is, however, flexible enough t@r numeric, for the density profilg(z). Approximate expres-
use another EOS, such as the Carnahan-Staf@® EOS  sjons of p(z) for hard sphere fluids have been developed
[27], or even molecular simulation data. using hypernetted chain and superposition approximations
. With four matching conditions identified and an EOS hQV'[28,2£§], but these approximations are not sufficiently accu-
ing been chosen, eagh(p) can now be determined by si- rate for extending SPT to inhomogeneous fluids at densities
multaneous solution of the relevant equations. Note that thfigher than aboypa®=0.4. We, therefore, chose to use den-
condition onG(\) as\ — o requires thaiBy(p) =p/ pkT. Af- sity profiles generated directly by Monte Carlo simulation.
ter eachg,(p) is determined, one can calculate the work of This is not a drawback, however, since highly accurate den-
insertion for any sized hemispherical cavity through the uséity profiles can be obtained via simulation with little com-

IV. RESULTS

of equation(21). putational effort. In addition, I-SPT, unlike bulk SPT, does
not yield information on the properties and structure of the
C. Interpolation for spherical cap-shaped cavity:h <0 hard sphere fluid near a wall. For example, I-SPT requires

Like the hemispherical case, we again use an asymptotihat an indeper.1den.t EOS be introduced. to calgulate
function to represerB(x ,h) beyond the exact limit. We pro- G(*°,N)=p/pKT. Likewise, p(z) must be determined outside

¢ @O0 ) for h<0 with the following f of I-SPT. Nevertheless, I-SPT is flexible enough such that
pose 1o represe ( s ) for Wi € following four- ¢ture analytical approximations f@i(z), when they become
term asymptotic series:

as accurate as simulation profiles, can be directly incorpo-
Balp.) | Balp,h) rated into I-SPT.

(N +h)/o A\ +h)/d?
A. Simulation method

2
M, N> A/ h2+ (2) . (29 The comparison with simulation results requires that both
N (N +h)/o 2 p(z2) andW(\,h) be determined computationally. We gener-

wherep;(p,h) are the matching coefficients. This series wasated all relevant data by MC simulations in an isothermal-
chosen from a list of possible functions as the one which bedgobaric(constaniN,p,T) ensemble with hard walls. All vari-
matched simulation data, in addition to reducing to Eg)  @bles were scaled using characteristic values for hard particle

for h=0. The three previously mentioned exact matchingSyStéms. The number of particles used in the various simu-
= lations was adjusted to ensure that a uniform fluid phase with

condﬂons of Imﬁ G(x,h)=p/pkT and the continuity of the appropriate bulk properties developed in the center of the
both G(\,h) and dG(\,h)/d\ at the exact limit still apply  simulation cell. Depending on the chosen density, the system
here. The other matching condition obtained from Widom'ssijze ranged from 500 to 3000 particles. Each simulation was
potential-distribution theor}25,26 is, however, not valid in  run for a target density in the center of the simulation cell,
this case because a cavity centereti &tO is never equiva-  with the imposed pressure being calculated from the PY EOS
lent to a solvent particle. Instead, we develop a fourth matchf1] to ensure consistency between the interior densitine

ing condition using a semiempirical argument\asecomes  density profile p(z), and the wall contact density(0)
large relative tghl, one may expect the cavity to behave like =p/kT. Hard walls were imposed at tizdimits of the simu-

a hemispherical cavity, i.e., the distribution of hard sphergation cell and periodic boundary conditions were applied in
centers around the nonhemispherical cavity should be neartpe x andy directions. Thex andy dimensions of the simu-
identical to that surrounding a hemispherical cavity of equalation cell were large enough to prevent a particle or cavity
radius. In other words, we expect the valuepGfi\ ,h) to be  “seeing” its mirror image. As a rule of thumb, these dimen-

G(\,h) = Bo(p.h) +
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sions were at leastM,,, Where\, ., was the largest cavity 45
radius probed by the simulation. The simulations were al- ] =06
lowed to equilibrate before recording results for a sufficient o
number of cycles, typically & 10* to 1P, each cycle includ- 35
ing N particle translations and one volume adjustment. Vol- T 05
ume moves were accomplished by adjusting only the length 3'0'_
of the cell in thez direction of the simulation ce[830,31] and 254
accepted according to standaM@T acceptance criterig82], o
while translational moves were accomplished by randomly|(:> 20~ ?‘i__
moving particles and looking for particle overlap. Simulation ] N T T T
. ) i 1.5 -

density profiles were generated by measuring the local den ] g 0.1
sity as a function ofz and averaging each bin over the 1.04+---7
length of the simulation. Results were collected over a pro- 1
duction run of 16 to 5x 1CP cycles. 054

The reversible work of cavity insertion for differentand o+
h was calculated from the probability of observing cavities 00 05 10 15 20 25 30 35 40
along the hard wall. To determin@/(\,h) for large cavity Mo

sizes(generally\ > 1.5¢), an umbrella sampling technique
[32] was used in which windows of progressively larger radii O .
were probed. Within each simulation window, a cavity was'©" the bulk densitiepo?=0.1, 0.3, 0.5, and 0.6. For comparison,
placed into on the system and grown or shrunk radially as af1® dashed line denotes the bulk SPT func®() for po?=0.3.
extra MC trial “move” each cycle. The cavity move was For all densities, both(O) andG(=) are equal t/pkT. Note that
controlled according to a biasing potentig)\). Good sta- the minimum in eactG(\) always occurs before=o/2.

tistics are achieved wheg(\)=-W(\), so we used a poly-

nomial regression of the previously collected cavity workeast 95% of its infinite limit within a cavity radius of only
profile to computes(\) [33]. After each window, the most four particle diameters. The bul&(\) requires a radius of
recent probability histogram was normalized according to théPProximately eight particle diameters to reach the same
biasing potential and linked with the previously collected Value:

work data to obtain the updated cavity work profile. With __ AAS argued previously, and as a consequence of(E9),

this method, we were able to determine work profiles up tdG(\) exhibits a minimum at some intermediate radius. A
cavity radii around 3. Beyond this size and for moderate to more detailed inspection of Fig. 4 also reveals that this mini-
high densities, the large system sizes required and the larggum always occurs befote= /2. The minimum ofG(\) is
number of windows needed, as a result of the ever-increasingot, however, located at the same valuezafhere the first
steepness dlV(\), made this simulation technique too com- minimum of the density profile(z) is found.[See Fig. 2b);

FIG. 4. Three-dimensional inhomogeneous SPT funcadm)

putationally expensive. in general, the first local minimum @f(z) may be located at
o a value ofz either greater than or less thar?2.] Neverthe-
B. Hemispherical cavity: G(A) and W(X\) less, there is a connection between these two minima. The

Once the density profile(z) and bulk pressure/KT are radius\ at which the minimum inG(\) occurs decreases

— . with an increase in the bulk densipy just as the value of
known, b OthG()‘.) andW(x) fof cavities ceptered =0 can at which thep(z) reaches its first local minimum decreases
be obtained using the equations shown in Sec. Ill B. Deter

TWith an increase irp. When p(2) is integrated in Eq(20),
m|n|ng p(2) directly from simulation allows us to calculate his behavior b ) b N )
GO\ “exactly” for A<o/2 using Eq. (20). G()\) and this behavior becomes part &(\) because the successive

therebyW(\), were calculated analytically for>¢/2 using Integration vqlum_es appearing in E0) yield smaller and
. " . smaller contributions.
the series approximation given by E@®2), where the four

hemispherical matching conditions were invoked to solve for Ultimately, the minimum irG(x) implies that the average
eachpi(p). density of particle centers at the cavity surface is less than

the hard wall contact value g§(0)=p/kT. Equation (20)
does not provide information on the local structure, or
¢-dependence of the density profile around the cavity. We
further investigate the minimum iG(\) in our companion
papeir{15], analyzing the local structure that develops around

Figure 4 displays the hemispherical I-SPT functi®f\)
for the bulk densitiespo>=0.1, 0.3, 0.5, and 0.6. Also in-
cluded for comparison is the corresponding bulk SPT func
tion G(\) atp0‘3—0.3.G()\) begins aip/ pkT for A=0 and, as
expected from Eq.19), has an initially negative slope. In the _ _ _ ) i .
imit of \ o0 6()\) again approaches/ pkT. Note that the hemispherical cay|ty. Interestingly, we find i) ini-

' — tially decreases despite the appearance of a local density en-

G()=p/pKT as well. In generalG(\) approaches the infi- hancement abovp/kT at the point of intersection between
nite limit much faster thai(\), as seen by the comparison the cavity and the=0 plane.

of these two functions presented in Fig. 4 fr°=0.3. In __The true test of I-SPT and the various relations describing
fact, for the bulk densities show(\) reaches a value of at G(\) is to compare the I-SPT work predictions f\) with
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FIG. 5. Reversible work of insertioV(\) for hemispherical FIG. 6. Reversible work of cavity insertiov(\) for cavities of

cavities of various radik centered az=0 for po3=0.3, 0.5, and radius X centered atz=0 for a reduced bulk presurps®/kT

0.6. Solid lines represent the work predictions I-SPT while the=10.308. The closed circles represent the MC simulation data, the

closed circles represent MC simulation data. dashed line denotes I-SPT results based on the PY EQOS, and the
solid line represents I-SPT results using the Carnahan-Std(iSg

the results of MC simulation. Figure 5 shows for several bulkEOS. The corresponding interior density from the PY EOpd3

densities the values dN(\) obtained fromg()\), via Eq. =0.9, while that from the CS EOS jsr®=0.914. Both densities are

. . . . . near the bulk hard sphere freezing transitimeezingﬁzo.%g
(21), along withW(\) determined directly from simulation. [34-36). At A=30, the deviation between the CS-based predictions

Overall, the agreement between simulation and I-SPT is €X3nd simulation data is=31kT corresponding to a 6.4% underpre-

cellent, at least up ta=3o. In particular, works of cavity giction. At the same point, the error in the PY-based predictions is
gI’OWth are predlcted with h|gh aCCUI’acy for ValueS)N(ﬂ\) z25k'|" Corresponding toab5.1% underprediction_
in excess of 10KT. For example, the error fopo>=0.6 at

A=30 is less than 0.2%. MC simulation becomes inefficient; _ . : ;
> . g f lightly | han that f he PY EOS.
for radii greater than @ due to sampling difficulties. Inho- 'S, In fact, slightly targer than that from the ©S. Using

- the CS EOS, good agreement between the I-SPT predictions
mogeneous SPT should, however, continue to accurately pr nd simulation data is found up to=o (as expected from

dict W(\) beyond & since, as seen in Fig. &(\) rapidly  ysing the matching condition at=c), but I-SPT begins to
approaches its infinite limit beyond=3c. For larger radii, underpredictW(\) for larger radii. This difference may be
the interfacial contributions t®(\) will become increas-  due to the MC simulation overpredicting the work of inser-
ingly small compared to the leading order pressure-volumeion or the error involved in usin\..(o) generated from the
contribution. _ _ CS EOS[which may not matchW. (o) obtained directly
_|-SPT can be subjected to a more rigorous test by examrom the simulatiof, or possibly the interpolation chosen for
Ining 1ts predictions for a ﬂu'd. pressure whose 22”‘ densﬂyg()\) not taking into account the discontinuitgnd potential

is near the hard sphere freezing transitippec,ing=0.949 i =, o
[34-36). Figure 6 compares simulation data to theoreticaldivergencein ¢°G/o\* ath=a/2. Yet, the I-SPT predictions
predictions for a reduced pressure @f3/kT=10.308 ob- are still reasonably accurate, as the e_rror}\alS(r is only
tained using two different equations of state. At this high=31KT for W(\) around 48&T, or approximately 6.4% error.
pressure, and since the EOS of the hard sphere fluid is néit the same point, the error in the PY-based prediction is
known exactly, the different EOSs yield different values of =25KT, corresponding to a 5.1% underprediction.

the bulk densityp corresponding to the same pressure. For

example, the SPT-derived PY EOS predicts that=0.9, )

while the more accurate CS EOS predicts that=0.914. C. Spherical cap

(For reference, the bulk density in the simulation center was \We now examine the accuracy of I-SPT results for cavi-

po®=0.911+0.005 for this pressuyeConsequently, the pre- yios centered at< 0. As for h=0, G(\,h) is calculated ex-

dictions of I-SPT using the PY EOS should not accuratelyactIy by integratingo(2) within a particular range ok [see

match data produced by MC simulation in an isothermal- . o . ;

isobaric ensemble in which th@essure not the interior den- Eq. (1_7)]' Beyond this exact I|m|_t, an |.nterpolat|o.n form, Eq.
sity, is fixed. Thus, a more accurate EOS may improve thé24), is used to represef@(x,h) in which the various coef-
predictions forW(\). Unfortunately, this is not observed in ficients are evaluated with the three exact conditions and a
Fig. 6 where the predictions of I-SPT using the CS gosfourth semiempirical condition discussed in Sec. I C.
yield an error comparable to I-SPT using the PY EOS wheW(\,h) is then calculated by integratinG(\,h) via Eq.
compared to simulation. The error for the CS-derived result$14).
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FIG. 7. The functiora()\,h) for cavities centered a=-0.70 at FIG. 8. Reversible work of cavity insertioi(\ ,h) for cavities

bulk densities ofoo3=0.3, 0.5, and 0.6. The dashed line shows thecentered az=-0.70 at bulk densitie$)a3:O.3, 0.5, and 0.6. Solid
corresponding hemispherica_i()\) for po=0.5. The minima in lines represent I-SPT predictions and solid circles represent data
G(\,h) do not occur within the exach range of 0.¢<)  9denerated by MC simulation.
=<0.86Qy.
volume of the hemispherical cavity that extends to the right

Figure 7 showsG()\ h) at various densities for cavities of z=0 is simply 16.76>. Forh=-0.70, the cavity displaces
centered ah=-0.70. The exact range for this choice bfis  only a volume of 8.3@°% just 49.6% of the hemisphere.
0.70<\<0.860r. The radius used for the semiempirical Thus, one might suspect that the local environment about
condition, G(Amaten) = G(Amaten ), IS Amaeri=40. The hemi-  each of these cavities will be quite different. Yet, the average

spherlcaIG()\) at po3=0.5 is shown for comparison. Quali- of the local densities of sphere centers in contact with each

. . . cavity surface are identical.
tEtNer, G(\,h) and the hemisphericaB(\) are the same. Figure 8 shows the I-SPT predictions of the work of cav-

G(\,h) satisfies the same limits qff pkT for A\=-h and\ jty insertion for the same densities chosen for Fig. 7. Again,
— asG(N), and also exhibits an initially negative slope. there is good agreement between the simulation data and the

Quantitatively, however, the initial behavior &(\,h) dif- theoretical predictions, at least up X&30. This agreement

fers greatly fromG(\). G(\,h) decreases at a rate initially @/SC indicates that the location of the minimumGi ,h) is
similar to G(\), but the minimum ofG()\ h) occurs at a predicted accurately by our chosen interpolation function

smaller relative distance, i.e., relative to the minimum valud Ed- (24)]. BecauseG(x,h) is close to the infinite limit at
of \. In addition, this minimum does not necessarily occur inA =30, the theory should continue to coincide with simula-
the exact\-range. For example, @io=0.6, the slope at the tion results for larger. The theory does begin to underpre-

exact limit(\=0.860r) is G'(0.86Qr,h)=-0.799/, indicat-  dict W(\,h) near\ =30 at densities at and aboyer®=0.5,

. - L . which may be a consequence of the fewer exact number of
ing thatG(\, h) is still decreasing. We must therefore rely on matching conditions that can be generated fier0. The

the m;;e.rpolatg)_nt fgntctlon tog)t:r%décérthe m|n|mug_1. Ir: this underprediction is not large, however, as I-SPT yields an
case, it is predicted to occur .920 [corresponding to a error of ~1.9% atpo®=0.6 and\ =30

relative distance of 0.92-0.70=0.20; in comparison, at the
same density, Fig. 4 reveals that the minimumGgh) oc- V. CONCLUSION

curs at a relative distance of 08P After the minimum, , , .

GOL ) mimi he behavi o idlv b . An inhomogeneous scaled particle theory that provides
(\,h) _m|m|.cs t_ € behavior o (A), rapidly eco_mlng theoretical methods for determining the reversible work of
nearly identical in value toG(A). The near equality of inserting a cavity near a hard structureless wall has been
G(\,h) andG(\) at such small radii indicates th&(\ , h) is presented. The I-SPT predictions of the work of insertion are
relatively insensitive to the value &f,qcnused in the match- in good agreement with MC simulation results for the hard

ing condition (as long as a sufficiently large value is se- Sphere fluid up to relatively large cavity sizes=30) for all
lected. This behavior oG()\,h) verifies our assumption that bulk densities below the fluid-solid transition. Thus, the ex-
. ) — act equations of inhomogeneous SPT were confirmed and the
for cavities centered behind the=0 plane(h<0), G(\,h) L . —
) = proposed series interpolations Gf\ ,h) were shown to be

eventually becomes |dentEaI ®(\). B very accurate.

The near equivalence @&(\,h) andG(\) at such a small Perhaps the most striking consequence of I-SPT is that the
radius of\=2¢ for pa®=0.5 is unexpected. For=20, the  average density of spheres in contact with cavity surface, or
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G(\,h), rapidly reaches a minimum value at small cavity APPENDIX: SLOPE AND CURVATURE OF G(A) AS A—
radii before increasing to its infinite size limit pf pkT. The . . . —.
minimum and the geometric reasons for its appearance are As dlscussed_ln Sec. lll, the asyr.npt-otllc valueGih) is
discussed in more detail in our companion pafis]. Be- p/ pkT. WhetherG(\) approaches this limit from above or

cause the initial decrease G{\ ,h) implies that the average below was not specified fr(_)m its defining equations. Here,
pressure on the cavity surface decreases, I-SPT confirms th4€ Present a thermodynamic argument that strongly suggests
the line tension developing at the three-phase interfacéhat G(\) always approaches its asymptotic value from be-
(where the cavity, wall, and fluid mees important in gov-  low. o

erning the behavior of cavities placed at a hard wall. The From Eq.(21), the slope ofG(\) is given by

decrease irG(\,h) also suggests that the line tension is a _
negative quantity. The value of the line tension, of course, G_ 1 (1w
depends on the selection of the dividing surfaces. We have IN 2mpkTON\NZ o\ )
assumed that the dividing surface between the fluid and the ] o )
cavity is convergent with the surface of the cavity and theSince the work of formation\W()), of a cavity intersecting
dividing surface between the fluid and the wall is the0  thez=0 plane can also be thought of as arising from the sum
plane. Selecting different locations could cause the line tenof pressure-volume, surface area, and line tension contribu-
sion or boundary tension to become positive. The line tentions, one can write the following expression:
sion, of course, becomes negligible for large cavities since dW= pdV+ d(7,A) + 7.dA +d(r.L). (A2)
G(\,h) approaches the hard wall contact value pajpkT.
I-SPT may be used to determine numerical estimations of thé the abover is the line tension of the three-phagavity-
line tension using the various relations of surface thermodyfluid-wall) interface(based on a suitably chosen dividing sur-
namics. face, L is the length of this linear interfacd,,, is the area
I-SPT can also be straightforwardly extended to the two-0f the wall exposed to the fluidy is the boundary tension of
dimensional hard disk fluid confined by planar hard walls& curved surface located a radiuom the cavity center and
[37]. The equations are similar to those presented in thi¢he remaining terms are as defined in Sec. Il. For the hemi-
paper, but show minor changes due to the different systerfiPherical cavity centered at0, Eq.(A2) is transformed to
g_eometr_y. _The _behawor of the two-dimensional version of AW= p2maZdh + d(7,2m02) — y,2mhd + d(7,270),
G(\,h) is identical to that shown here, buG/Jo\ at the
exact limit is not used as a matching condition, IBé\) in (A3)
bulk SPT for hard disk$18]. Work predictions from two- where the cavity-fluid dividing surface is chosen to be the
dimensional I-SPT also agree quite well with those from MCsame as the cavity surfa¢e=\) and the three-phase inter-
simulation, despite the discontinuity &/ d\. face is chosen to lie within the=0 plane. After some
Finally, the ideas presented here provide the initial stepstraightforward algebra, one has
required for the development of an improved SPT-based 5 5
method of calculating the depletion potentials and forces fori(iM) _o v Am  Amoy, 2w 2w &

(A1)

i i icti 2 T 2__27r+_ _2700+_ 2
a confined fluid. The work predictions for< o could be IN\NE ON I\ A N IN A N oM
used to determine part of the depletion potential of a solute 4
whose diameter is less than the hard particle diameter. of - —Zﬂ- (A4)
A

Our theory does not yet allow us to generate depletion po-

tentials forz>0 or for solute diameters greater than To As the cavity becomes large, both the boundary tensjon

calculate depletion potentials fa>0, an alternative ap- and line tensionr. may be approximated by the asymptotic
proach must be developed in which a cavity is “pushed” intofunctions[l] '

the fluid. Calculating the force in thedirection that opposes
this “pushing” allows one to determine the work required to 28
“push” the cavity into the fluid. Relations similar ®(\, h) %= ra\1-1 (A5)

are needed to predict this force, i.e., a functfei ,h) de-
scribing the net normal fordgn the z direction on the cavity
surface centered a=h can be related to various statistical

geometric quantities. I-SPT, as validated by the presented Tr = Too(
results, can be used to generate a crucial matching condition

for this new functionF(\ ,h). The extension of I-SPT to de- Entering these approximations into Eé4) yields the fol-

scribeF(\,h) is the subject of a forthcoming paper. lowing expression:

_G
1 A). (AB)
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N pkTA?

G_-1y.

+0O(\%), (A8)

which is always positive because <0. By taking an addi-
tional derivative of Eq(A7), the second derivative @b(\),
to the leading order, is

PG 2 Voo
—=—22+0(\%, A9
N> pkT A3 ™) (A9)
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which is always negative, indicating th§(h) is concave

down. Becauseg()\) has both a positive slope and negative
curvature ad — oo, it will approach its asymptotic limit from
values less thap/pkT. The above argument does not ex-
clude the appearance abowkpkT of a maximum inG(\) at
some cavity radius betweexro/2 and\=. Such a maxi-
mum, however, would require the structure @f\) to be
much more complex than is currently thought. Simulation
results, along with the overall accuracy of the I-SPT formal-
ism, do not indicate that a maximum occurs ab@/@kT
and are coincident with the conclusion thaf\) always re-
mains below its asymptotic limit.
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